Supplemental material is neither peer-reviewed nor thoroughly edited by CJASN. The authors alone are responsible for the accuracy and presentation of the material.

Supplemental Table S1: Conversion equations for results of laboratory measurements performed on Merck Mega Analyzer or Roche Modular and PTH assays

Measurement	Conversion equation
Serum phosphate	$Y^a = (X^b - 0.03)/0.97$
Serum creatinine	$Y^a = (X^b - 8)/1.07$
Serum albumin	$Y^a = (X^b + 6)/1.132$
Serum calcium	No differences between methods
Urinary phosphate	$Y^a = X^b/0.943$
Urinary creatinine	No differences between methods
Urinary protein	$Y^a = (X^b + 0.05/1.403)$
Urinary urea	$Y^a = (X^b - 9)/0.996$
Serum PTH	$Y^{c}=(1.27*X^{d})+0.5$

^aRoche Modular (Roche Ltd., Mannheim, Germany)

Conversion equations are presented in SI units.

^bMerck Mega Analyzer (Merck, Darmstadt, Germany)

^cImmulite 2500 (Siemens Healthcare Diagnostics, Deerfield, IL, USA)

^dILMA (Advantage, Nichols Institute Diagnostics, CA, USA)

Supplemental Table S2: Missing value analysis

Variable	Missing, n(%)
PTH concentration*, pg/mL	764 (80%)
PTH concentration pre-Tx, pg/mL	728 (76%)
24h urea excretion, mg/dL	310 (32%)
$BMI, kg/m^2$	194 (20%)
Warm ischemia time, minutes	177 (19%)
Phosphate 12 mo after Tx, mg/dL	163 (17%)
Proteinuria*, g/24h	149 (16%)
Systolic blood pressure, mmHg	82 (9%)
Diastolic blood pressure, mmHg	82 (9%)
Phosphate 6 mo after Tx, mg/dL	82 (9%)
Pre-transplantation diabetes mellitus (prevalence, %)	23 (2%)
Pre-transplantation CV-event (prevalence, %)	24 (3%)
Dialysis duration prior to transplantation, months	21 (2%)
Albumin*, g/L	17 (2%)
Calcium*, mg/dL	10 (1%)
Estimated GFR (CKD-EPI)*, mL/min/1.73 m ²	5 (0.5%)
CMV positive, (prevalence, %)	5 (0.5%)
Donor CMV positive, (prevalence, %)	5 (0.5%)

^{*} Measured at the time of lowest serum phosphate concentration

Little's test for testing Missing Completely At Random relationship for missing data: Chi^2 =47.11, p=1.000. We compared missing data for Cox regression variables: patients with missing BMI data had significantly higher lowest serum phosphate concentrations (t-test, p<0.001), but no correlation between BMI and serum phosphate concentrations was found (Spearman's rho= -0.007, P=0.84). Multiple imputation using the fully conditional specification method showed that results for the Cox regression models did not differ relevantly and significantly between multiple imputation and listwise deletion. In the manuscript, results are shown using listwise deletion. For PTH concentrations pre-Tx and at the time of the lowest phosphate, Cox regression models did not converge, so these variables were imputed. PTH, parathyroid hormone; BMI, body mass index; Tx, transplantation; CKD-EPI, chronic kidney disease-epidemiology collaboration.