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Alterations in intracellular calcium homeostasis and cyclic adenosine 3�,5�-phosphate likely underlie the increased cell
proliferation and fluid secretion in polycystic kidney disease. Hormone receptors that affect cyclic adenosine 3�,5�-phosphate
and are preferentially expressed in affected tissues are logical treatment targets. There is a sound rationale for considering the
arginine vasopressin V2 receptor as a target. The arginine vasopressin V2 receptor antagonists OPC-31260 and tolvaptan
inhibit the development of polycystic kidney disease in cpk mice and in three animal orthologs to human autosomal recessive
polycystic kidney disease (PCK rat), autosomal dominant polycystic kidney disease (Pkd2�/WS25 mice), and nephronoph-
thisis (pcy mouse). PCK rats that are homozygous for an arginine vasopressin mutation and lack circulating vasopressin are
markedly protected. Administration of V2 receptor agonist 1-deamino-8-D-arginine vasopressin to these animals completely
recovers the cystic phenotype. Administration of 1-deamino-8-D-arginine vasopressin to PCK rats with normal arginine
vasopressin aggravates the disease. Suppression of arginine vasopressin release by high water intake is protective. V2 receptor
antagonists may have additional beneficial effects on hypertension and chronic kidney disease progression. A number of
clinical studies in polycystic kidney disease have been performed or are currently active. The results of phase 2 and 2–3 studies
indicate that tolvaptan seems to be safe and well tolerated in autosomal dominant polycystic kidney disease. A phase 3,
placebo-controlled, double-blind study in 18- to 50-yr-old patients with autosomal dominant polycystic kidney disease and
preserved renal function but relatively rapid progression, as indicated by a total kidney volume >750 ml, has been initiated.
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T he polycystic kidney disease (PKD) proteins are multi-
functional interacting proteins that are essential to
maintain the differentiated phenotype of the tubular

epithelium. Reduction in one or more of these proteins below a
critical threshold results in a phenotypic switch characterized
by altered protein trafficking and targeting, increased cell–
matrix and reduced cell–cell adhesiveness, increased rates of
proliferation and apoptosis, loss of planar polarity, and expres-
sion of a secretory phenotype. Increased cell proliferation and
loss of planar polarity are responsible for cyst initiation,
whereas increased fluid secretion and the persistent effects of
factors that initiate cyst formation contribute to cyst growth
(reviewed in reference [1]).

Molecular Mechanisms of Polycystic Kidney
Disease

The proteins encoded by PKD1 (polycystin-1 [PC1]), PKD2
(polycystin-2 [PC2]), and PKHD1 (fibrocystin/polyductin [FC])
are membrane-associated proteins. PC2 is a transient receptor
potential channel with high permeability to calcium (also known

as TRPP2). PC1 (also known as TRPP1) directly and FC indirectly
interact with PC2 and modulate its channel activity (2–4). PC1 and
FC have other functions that in turn may be modulated by PC2
and calcium. PC1, PC2, and FC are located in primary cilia (5–7).
PC2 is also present in the endoplasmic reticulum, where it inter-
acts with inositol triphosphate and ryanodine receptors (8–10).
Together, these receptors are responsible for calcium release from
intracellular stores. In primary cilia, the polycystin complex trans-
lates mechanical stimulation of the cilia into calcium entry, which
triggers calcium-induced calcium release from the endoplasmic
reticulum (Figure 1A). PC2 interacts with TRPV4, a likely compo-
nent of the mechanosensory apparatus in primary cilia (11), and
TRPC1, the strongest candidate component of the store-operated
calcium channel (12). Reductions in the levels of PC or FC below
a critical threshold disrupt intracellular calcium homeostasis (13–
17). In renal tubular epithelial cells, intracellular calcium limits
cAMP accumulation by inhibiting adenylyl cyclase 6 and possibly
by activating phosphodiesterase 1 (18,19). In animal models of
autosomal dominant (ADPKD) and recessive (ARPKD) PKD, the
renal levels of cAMP are increased, likely as a result of the dis-
ruption of intracellular calcium homeostasis (20–24). cAMP stim-
ulates chloride-driven fluid secretion (25) (Figure 1B). Whereas
under normal conditions cAMP inhibits mitogen-activated pro-
tein kinase signaling and cell proliferation, in PKD or in conditions
of calcium deprivation it stimulates cell proliferation in an src-,
Ras-, and B-Raf–dependent manner (26–28). Cell proliferation
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may be further enhanced by stimulation of Erb-B by EGF-like
factors that are present in cyst fluid (Figure 1C) (29). Mammalian
target of rapamycin is also activated in cystic epithelium, likely as
a result of a disrupted tuberin–polycystin-1 interaction or to ex-
tracellular signal–regulated kinase– or Akt-dependent phosphor-
ylation of tuberin that prevents its association with hamartin and
inhibits its GTPase activating function for Rheb (30) (Figure 1D).

Hormone Receptor–Targeted Interventions

The understanding of molecular mechanisms operative in
PKD has identified a number of targets for therapeutic inter-
ventions that have been effective in animal models of the dis-
ease (31). A strategy to target hormone receptors that affect
cAMP is attractive, given the restricted expression of particular

Figure 1. (A) Polycystin-1 (PC1), polycystin-2 (PC2), and fibrocystin/polyductin (FC) are located in primary cilia. PC2 is also
present in the endoplasmic reticulum, where it interacts with inositol triphosphate (IP3R) and ryanodine (RR) receptors. Together,
these receptors are responsible for calcium release from intracellular stores. In primary cilia, the polycystin complex translates
mechanical stimulation of the cilia into calcium entry, which triggers calcium-induced calcium release from the endoplasmic
reticulum (ER). (B) Reductions in the levels of PC or FC below a critical threshold disrupt intracellular calcium homeostasis.
Reduced calcium level at certain cellular domains enhances cAMP accumulation by increasing the activity of adenylyl cyclase 6
and possibly decreasing the activity of phosphodiesterase 1. cAMP stimulates chloride-driven fluid secretion. (C) Whereas under
normal conditions cAMP inhibits mitogen-activated protein kinase signaling and cell proliferation, in PKD or in conditions of
calcium deprivation it stimulates cell proliferation in an src-, Ras-, and B-raf–dependent manner. The proliferative effect of cAMP
may be further enhanced by the stimulation of Erb-B receptors by EGF-like factors present in cyst fluid. (D) Mammalian target of
rapamycin (mTOR) is also activated in cystic epithelium, likely as a result of a disrupted tuberin–PC1 interaction or to extracellular
signal–regulated kinase– or Akt-dependent phosphorylation of tuberin that prevents its association with hamartin and inhibits its
GTPase-activating function for Rheb. AC-VI, adenylyl cyclase type VI; ATP, adenosine triphosphate; CAML, calcium modulating
cyclophilin ligand; CFTR, cystic fibrosis transmembrane conductance regulator; ER, endoplasmic reticulum; ERK, extracellular
signal–regulated kinase; Gi, Gi-type protein; Gq, Gq-type protein; IP3, inositol triphosphate; MEK, mitogen-activated protein kinase
kinase; PDE, phosphodiesterase; PKA, protein kinase A; PKD, polycystic kidney disease; PLC, phospholipase C; R, receptor.
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receptors in certain tissues and the central role of cAMP. There
are a number of reasons for considering the use of arginine
vasopressin (AVP) V2 receptor antagonists. The localization of
the V2 receptors in the distal nephron and collecting duct (32)
corresponds to the main site of cystogenesis in ARPKD and
arguably in ADPKD (33). As a result of terrestrial adaptation,
tetrapods are constantly subjected to the tonic action of vaso-
pressin on V2 receptors. AVP is the main agonist of adenylyl
cyclase in freshly dissociated collecting ducts (34). Patients with
PKD have increased circulating levels of AVP (35–37). Animal
models of PKD also have increased circulating levels of AVP as
well as upregulation of AVP- and cAMP-dependent genes such
as the V2 receptor and aquaporin-2 (20–22). In the past decade,
several nonpeptide, orally bioavailable V2 receptors have been
extensively investigated for the treatment of euvolemic and
hypervolemic hyponatremia and found to be reasonably safe
(38–42).

Preclinical Studies
In 1999, Gattone et al. (43) reported that the V2 receptor

antagonist OPC-31260 had a marked protective effect on the
development of PKD in the cpk mouse, a model of rapidly
progressive cystic disease. To extend this observation, OPC-
31260 was then used in three animal models orthologous to
human ARPKD (PCK rat), ADPKD (Pkd2WS25/� mouse), and
adolescent nephronophthisis (pcy mouse) (20,21). Renal concen-
trations of cAMP are significantly increased in the three mod-
els, compared with wild-type animals. In PCK rats, the admin-
istration of OPC-31260 between 3 and 10 wk or between 10 and
18 wk of age significantly reduced the renal levels of cAMP, the
activation of Ras and extracellular signal–regulated kinase, and
the expression of the pro-proliferative isoform of B-Raf. This
was accompanied by a marked inhibition of disease develop-
ment, when administered between 3 and 10 wk of age, or of
disease progression, when administered between 10 and 18 wk
of age, as reflected by significant reductions in kidney volume,
cyst and fibrosis volumes, plasma blood urea nitrogen (BUN),
and mitotic and apoptotic indices. In Pkd2WS25/� mice, the
administration of OPC-31260 lowered the renal levels of cAMP,
downregulated the expression of V2 receptor– and cAMP-de-
pendent genes (V2 receptor and aquaporin 2), and markedly
inhibited the development of PKD, as reflected by lower kidney
weights, cyst and fibrosis volumes, plasma BUN levels, and
mitotic and apoptotic indices. OPC-31260 was also protective in
the pcy mouse (Figure 2). Because OPC-31260 is a weak antag-
onist for the human V2 receptor, a derivative with a higher
affinity for the human V2 receptor (tolvaptan) has been under
commercial development for the treatment of hyponatremia in
humans (44). This antagonist was also effective in animal mod-
els of ARPKD, ADPKD, and nephronophthisis (22,45,46). Nei-
ther OPC-31260 nor tolvaptan had a beneficial effect on the
development of fibropolycystic liver disease, which is consis-
tent with the absence of V2 receptor expression in the liver.

To determine whether the protective effect of these drugs is
indeed due to V2 receptor antagonism, we decided to generate
PKD rats that lack circulating AVP and determine the effect of
administering the exogenous V2 receptor agonist 1-deamino-8-

d-AVP (dDAVP) (47). For this purpose, we crossed Brattleboro
rats, which are homozygous for a mutation in the AVP gene
and lack circulating AVP, and PCK rats and intercrossed the F1
animals to create PCK rats with normal AVP, heterozygous or
homozygous for an AVP mutation, as well as wild-type and
Brattleboro controls. At 10 and 20 wk of age, PCK rats homozy-
gous for an AVP mutation were almost completely protected,
whereas AVP heterozygosity had no detectable protective ef-
fect. The administration of dDAVP between 12 and 20 wk of
age completely recovered the cystic phenotype. The adminis-
tration of dDAVP to PCK rats with normal AVP aggravated the
development of the cystic disease (Figure 3).

Nagao et al. (48) offered PKD rats 5% sucrose in drinking
water to increase water intake and suppress AVP levels. This
strategy caused a marked amelioration of the renal cystic dis-

Figure 2. Kidney sections from PCK rats, Pkd2�/WS25 mice, and
pcy mice untreated (top) or treated (bottom) with OPC-31260.
Sections from PCK rats and pcy mice are representative kidney
sections. Sections from Pkd2�/WS25 mice illustrate the most se-
vere cystic disease in the control and treatment groups.

Figure 3. Representative kidney sections from 20-wk-old male
(top) and female (bottom) PCK AVP�/�, PCK AVP�/�, and
PCK AVP�/� rats, and PCK AVP�/� rats treated with
1-deamino-8-d-arginine vasopressin (dDAVP; 10 ng/h per
100 g body wt) using osmotic minipumps from 12 to 20 wk of
age.
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ease, supporting a central role for AVP and cAMP in cystic
disease.

In addition to an effect on cystogenesis, V2 receptor antago-
nists may have beneficial effects on hypertension and chronic
kidney disease (CKD) progression. In regard to hypertension,
V2 receptor antagonists may have an antihypertensive effect by
functionally downregulating amiloride-sensitive epithelial Na�

channel, Na�K�-ATPase, Na�-K�-2Cl� co-transporter, and
thiazide-sensitive Na�-Cl� co-transporter, thus reducing so-
dium reabsorption (49–53). Consistent with this is the observa-
tion that Brattleboro rats are resistant to the development of
DOCA-salt hypertension and that chronic stimulation of vaso-
pressin V2 receptors increases BP in the healthy rat and wors-
ens hypertension in DOCA-salt–treated animals (54,55). Con-
versely, an argument could be made that V2 receptor
antagonists could have a prohypertensive effect by inhibiting
nitric oxide production in the collecting ducts and interfering
with medullary vasodilation (56).

In regard to CKD progression, Bankir and colleagues (57,58)
argued that V2 receptor activation, by increasing urea recycling
from the collecting duct into the loop of Henle, reduces sodium
concentration at the macula densa; inhibits tubuloglomerular
feedback; stimulates renin release; and results in glomerular
hyperfiltration, proteinuria, and renal damage. By interfering
with this chain of events, V2 receptor antagonists might have a
renoprotective effect similar to that of angiotensin-converting
enzyme inhibitors or angiotensin II receptor blockers. In this
regard, it is of interest that AVP deficiency and water loading
inhibit CKD progression in five-sixths nephrectomized rats
(59,60).

Clinical Studies
A number of clinical studies on the effect of tolvaptan in

ADPKD have been completed or are currently active under the
Tolvaptan Efficacy and Safety in Management of PKD and
Outcomes (TEMPO) program. Phase 2a studies (248 and 249)
have been completed, whereas two multicenter studies (250
and 251) and a single-center mechanistic study (260) are cur-
rently active.

In TEMPO 248, ascending single doses of tolvaptan (15, 30,
60, and 120 mg) were administered every 3 d and showed a
dosage-dependent increase in urine output (61–63). Hyposte-
nuria, a surrogate marker for vasopressin suppression, was
sustained during 16 h after the administration of 30, 60, or 120
mg, but urine osmolality increased above 300 mOsm/kg in
most patients 16 to 24 h after receiving 30 or 60 mg of tolvaptan.
In TEMPO 249, different split doses of tolvaptan (15/15, 30/
placebo, 30/15, 30/30 mg) were administered for 5 d at 8 a.m.
and 4 p.m. to groups of patients (parallel-arm design) (61–63).
Split-dose administration was more effective than a single dose
in achieving sustained hyposthenuria, and the mean urine out-
put on the fifth day was lower than that on the first day of
treatment, 4 to 6 compared with 6 to 7 L per 24 h.

Study 250 is an open-label study that consists of a titration
phase and a fixed-dose phase (64). The initial dose of tolvaptan
in the titration phase was 30/15 mg at 8 a.m. and 4 p.m., with
the option to down-titrate to 15/15 if not tolerated. The dosage

was increased at weekly intervals to 45/15, 60/30, and 90/30
mg when tolerated. During the titration phase 96, 61, and 46%
of the patients said that they could tolerate 45/15, 60/30, and
90/30 mg for the rest of their life. Urine osmolalities before the
morning dose of tolvaptan were �300 mOsm/kg in 20 to 30%
of patients who were taking 45/15, 60/30, or 90/30 mg/d,
pointing to the difficulty in achieving sustained hypostenuria
in all of the patients. On the basis of the results of the titration
phase, participants were randomly assigned to high (60/30 mg)
and low (45/15 mg) dosages of tolvaptan for the fixed phase
that is planned to last 3 yr. At the time of a published interim
report, at approximately half point into the trial, the mean
premorning dose urine osmolality was �300 mOsm/kg. There
was an initial, slight increase in serum creatinine that later
declined toward baseline. Serum BUN significantly decreased,
whereas there was a slight but significant increase in uric acid.
Both systolic and diastolic BP tended to decrease with time, but
this change is difficult to interpret in the absence of a control
group. Five patients withdrew from the study, in four cases
because of adverse events and one case because of noncompli-
ance. One of the adverse events that led to discontinuation was
deemed to be related to the drug, an increase in serum creati-
nine from 1.4 to 1.7 mg/dl that was rapidly reversible after
discontinuation of the drug. The other adverse events that led
to discontinuation included periorbital swelling, transient isch-
emic attack, and a benign pituitary microadenoma.

TEMPO 251 is a phase 3, placebo-controlled, double-blind
study in 18- to 50-yr-old patients with preserved renal func-
tion but relatively rapid progression, as indicated by a total
kidney volume �750 ml. The primary end point is renal
volume change by magnetic resonance, and the secondary
end point is time to multiple progression events. The dura-
tion of treatment is 3 yr. After a screening and a randomiza-
tion visit, the masked medication is increased at weekly
intervals from 45/15 to 90/30 mg/d if tolerated. After the
titration phase, visits occur every 4 mo and magnetic reso-
nance scans are obtained yearly.

Conclusions
Extensive animal studies suggest that AVP is a powerful

modulator of cystogenesis, that inhibition of renal cAMP
production accounts for the protective effect of V2 receptor
antagonists, and that these drugs may afford additional ben-
efits on hypertension and CKD progression. These studies
provide a strong rationale for clinical trials using V2 receptor
antagonists in ADPKD. Phase 2a studies have been com-
pleted. Two multicenter studies (an open-label study and a
phase 3, placebo-controlled, double-blind study) are cur-
rently active.
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