Glomerular Disease: Looking beyond Pathology

Abstract
The National Institute of Diabetes and Digestive and Kidney Diseases–sponsored Kidney Research National Dialogue asked the scientific community to formulate and prioritize research objectives aimed at improved understanding of kidney function and disease progression. Over the past 2 years, 1600 participants posted almost 300 ideas covering all areas of kidney disease. An overriding theme that evolved through these discussions is the need to move beyond pathology to take advantage of basic science and clinical research opportunities to improve diagnostic classification and therapeutic options for people with primary glomerular disease. High-priority research areas included focus on therapeutic targets in glomerular endothelium and podocytes, regenerating podocytes through developmental pathways, use of longitudinal phenotypically defined disease cohorts to improve classification schemes, identifying biomarkers, disease-specific therapeutics, autoantibody triggers, and changing the clinical research culture to promote participation in clinical trials. Together, these objectives provide a path forward for improving clinical outcomes of glomerular disease.

Introduction
Primary glomerular disease affects both children and adults, causes about 10% of ESRD, and costs approximately 1% of Medicare dollars for RRTs. This commentary focuses on a subset of the currently pathologically defined primary inflammatory and noninflammatory glomerular diseases, including membranous nephropathy (MN), minimal change disease (MCD), FSGS, and IgA nephropathy (IgAN). Despite their importance, knowledge of their pathogenic origins and effective therapies remain limited.

The National Institute of Diabetes, Digestive, and Kidney Diseases sponsored the Kidney Research National Dialogue to identify critically important research objectives and facilitate community-wide strategic planning. An overriding theme that evolved through these discussions is the need to move beyond pathology by integrating basic research and clinical approaches to develop new classifications and novel therapeutic targets as a way to improve patient outcomes (Figure 1).

The glomerulus is a specialized structure adapted for filtration and regulating body homeostasis. Its specialized cells (endothelial, mesangial, juxtaglomerular, and parietal epithelial cells and podocytes) are resident on and contribute to specialized matrix structures (glomerular basement membrane [GBM] with its constituent proteins, mesangium, and Bowman’s capsule). During disease, these cells and structures become the target of disordered innate and adaptive immune, complement, and other host defense and regulatory mechanisms that derange carefully orchestrated feedback loops between these cells and structures. Patients develop a specific disease from a unique combination and integration of genetic susceptibilities, environmental factors, and epigenetic changes. Disease classification is currently based on pathologic changes observed on renal biopsy; however, improved understanding of pathophysiological mechanisms will likely change this classification schema. Although inhibition of the renin-angiotensin-aldosterone system and nonselective immunosuppression and/or suppression of inflammation are mainstays for mitigating glomerular diseases, relatively little is known about other pathways and their potential for therapeutic intervention. Below are areas of focus that require additional research.

Glomerular Endothelium
The initial point of contact between the immune cells in circulation and the renal tissue is the large surface area of the vascular glomerular endothelium, particularly the glyocalyx that coats the glomerular endothelial cells. The vascular endothelium is a major site of inflammation, T-cell autoreactivity, leukocyte recruitment and diapedesis, and the target of both cellular- and humoral-mediated immune responses. Therefore, delivering therapeutic interventions to the renal endothelium, particularly in glomeruli, represents a potential target for intervention.

Podocyte Plasticity and Development
Podocyte plasticity is a feature of proteinuric glomerular diseases that may represent a reversal of the podocyte developmental process. A better understanding of underlying mechanisms involved in podocyte development (signaling cascades, genetic and transcriptional regulation, intracellular protein trafficking, and autophagic degradation) is needed. Other areas of...
Autoantibody Triggers

Anti-GBM, anti-ANCA, antiphospholipase A2 receptor antibody (anti-PLA2R), and IgG antibodies against aberrantly glycosylated IgA1 antibody are now established as pathogenic autoantibodies in Goodpasture disease, ANCA-associated vasculitis, MN, and IgAN, respectively. However, the primary events that trigger loss of tolerance to these autoantigens remain a mystery. Each of these diseases provides a potentially tractable approach to effective therapy aimed at upstream causation. Achieving the ultimate goal of restoring self-tolerance in these autoimmune diseases will require fine mapping of the primary epitope and identifying specific antigen recognition partners in the immune system. Realization of this opportunity will require cooperation between immune chemists, basic immunologists, and nephroscien-tists. Although animal models are important tools to refine and test what is learned in human biology, human translational studies are a sine qua non.
For example, circulating anti-PLA2R antibody in MN provides a diagnostic tool that should efficiently guide therapies and serve as a surrogate for clinical trials. The goal of restoring self-tolerance notwithstanding, it should be possible to develop affinity absorption strategies to remove pathogenic Ig and design small blocking molecules to inhibit binding to antigens. There is also a window of time from active antibody deposition until effective immune activation when targeted inhibition of complement may prevent ongoing injury.

Mechanisms by which nephrotic syndrome associated with diffusely effaced foot processes can be either steroid-sensitive or -resistant, and often (but not always), they are accompanied by FSGS; these mechanisms remain poorly understood. Genetic studies for the majority of single gene mutations associated with MCD and/or FSGS phenotypes, accompanied by careful clinical phenotyping, will help define major pathways. The role of podocyte-secreted angiopoietin-like-4 in driving pathologic MCD nephrotic syndrome and soluble urokinase-type plasminogen activator receptor- and cluster of differentiation 80-targeted therapies for FSGS-like phenotypes are potentially important advances that remain to be confirmed. The mechanisms by which Apolipoprotein L1/myosin heavy chain 9 confers risk in the African-American population need to be understood to develop effective therapeutic approaches to prevent disease progression.

IgAN is the most common primary glomerular disease, but the clinical relevance of genetic loci associated with disease remains poorly defined. Although the elucidation of immunologic targets of unique chemical bonds and abnormally glycosylated IgA has advanced rapidly, the clinical science has not. There is a need for surrogate markers of response that correlate with definitive outcomes (i.e., organ and patient survival), and it remains undetermined whether histologic improvement after treatment is an adequate response measure.

Patient Cohorts for Longitudinal History, Classification, and Individualized Medicine

Glomerular disease classifications are currently based on histologic criteria, and patients are typically treated with a few nonspecific immune-modulating agents. However, individual complexity may be better explained by deriving new subgroups based on a wider range of information, including genetic, epigenetic, and environmental exposures; upstream immune or nonimmune mechanisms; downstream pathophysiologic pathways; and responsiveness to different classes of drugs. This information can then be integrated to develop and validate individualized pathways and biomarkers that inform the design of optimized, patient-specific interventions. Unraveling this complexity cannot be done in animals but requires cohorts of accurately phenotyped patients that are followed long-term through disease exacerbations and remissions. Complex analytic tools are needed to integrate phenotype information with omic information from blood, urine, and tissue. Identified pathways, regulatory hubs, targets, and potential interventions can be tested in high-throughput model systems (e.g., zebrafish or fruit fly). It will then be critical to learn how to define individualized risk and effectively implement preventive strategies in a cost-effective manner.

Promoting Glomerular Disease Research

A change in culture is needed to emulate the pediatric oncology and cystic fibrosis fields that actively encourage scientific collaboration and participation in clinical studies and trials. This cultural change can be driven by nephrologists, disease-based advocacy groups and foundations, and patients through self-identification and registries.

Summary

Capitalizing on the opportunities afforded by new scientific advances in general and glomerular science in particular will require collaboration of clinicians, scientists, and patients working together. Each primary glomerular disease is driven by particular upstream immune or nonimmune mechanisms that require focused molecular definition, specific biomarker development and validation, and targeted intervention strategies. Circulating anti-PLA2R antibody in MN serves as a paradigm for this approach. Individualized medicine approaches may be useful to provide individualized pathway analysis for drug targeting. A focus on the glomerular endothelium and podocytes is likely to yield payoff in terms of biomarker development and novel therapies. Translation to the clinic requires continued development of phenotypically defined patient cohorts for biosample acquisition, biomarker validation and drug testing, patient cooperation, and advocacy. We hope that the identification of these broad themes will help to move glomerular disease beyond pathology to focus on basic science and clinical research opportunities to improve patient outcomes.

Acknowledgments

The Kidney Research National Dialogue (KRND) was developed and implemented by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)/Division of Kidney, Urologic and Hematologic Diseases staff and directed by K.E.R.-S. The authors thank the many members of the kidney community who participated in the KRND. The glomerular disease topic was facilitated by M.M.-M. and M.F.F. The complete listing of areas of research emphasis in priority order is available on the NIDDK KRND website (http://www.niddk.nih.gov/about-niddk/offices-divisions/division-kidney-urologic-hematologic-diseases/kidney-research-national-dialogue/Pages/kidney-research-national-dialogue.aspx). Please visit this website for updates on KRND.

Disclosures

L.B.H. is a consultant for GSK and Bristol Meyer Squibb. S.S.C. is Founder, President, and Chief Executive Officer of GDTherapy LLC and has filed patents related to the use of Angpt14 mutants (PCT/US2011/039255) and precursors of sialic acid, including ManNAc (PCT/US2011/039058), for the treatment of nephrotic syndrome. He may benefit financially from these patents in the future. H.T. is a consultant for Retrophin, Inc., Kaneka, Corp., and Otsuka, Inc. He is on the American Board of Pediatrics Nephrology Subboard Self-Assessment Program and is the editor for the Nephrology Self-Assessment Program issue on pediatric nephrology and cystic fibrosis. He may benefit financially from these roles. M.M.M.-M. and M.F.F. have disclosed no relevant financial interests.

Supplemental Material

This article contains supplemental material online at http://cjASN.asnjournals.org/lookup/suppl/doi:10.2215/CJN.01450214/-/DCSupplemental.
GLOMERULAR DISEASE: SEEING BEYOND PATHOLOGY
Author contact, affiliation and disclosure information

Roger Charles Wiggins, MD
Professor of Medicine
University of Michigan
Medical Center
Division of Nephrology
3914 Taubman Center
1500 E. Medical Center Drive
Phone: 734-4813
Email: Rwiggins@umich.edu

Dr. Wiggins reports no disclosure information.

Charles E. Alpers, MD
Professor of Pathology
University of Washington School of Medicine
Department of Pathology
USA
Medical Center
Box 356100
Seattle, WA 98195
Phone: 206-598-6409
Email: calp@u.washington.edu

Dr. Alpers reports no disclosures.

Lawrence B. Holzman, MD
C. Mahlon Kline Professor
Perelman School of Medicine, University of Pennsylvania
Renal Division, Department of Medicine
USA
415 Curie Blvd., 405 CRB
Philadelphia, PA, 19104
Phone: 215-573-1831
Email: lholzman@upenn.edu

Dr. Holzman provides the following disclosures: I am a Consultant for GSK, Bristol Meyer Squibb.

John Cijiang He, MD
Professor
Icahn School of Medicine at Mount Sinai
Department of Medicine, Nephrology
USA
New York, NY 11375
Phone: 212-241-3568
Email: cijiang.he@mssm.edu
Dr. He reports no disclosures.

David J. Salant, MD
Professor of Medicine
Boston University Medical Center
Department of Medicine
USA
Evans Biomedical Research Center, X504
650 Albany Street
Boston, MA 02118
Phone: (617) 638-7330
Email: djsalant@bu.edu

Dr. Salant reports no disclosures.

Sumant Singh Chugh, MD
Professor of Medicine
University of Alabama at Birmingham
Department of Medicine
USA
UAB Nephrology, THT 611L
1900 University Blvd
Birmingham AL 35294
Phone: (205)996-9641
Email chugh@uab.edu

Dr. Chugh reports the following disclosures: Sumant S. Chugh is Founder, President and Chief Executive Officer of GDTherapy LLC, and filed patents related to the use of Angpt4 mutants (PCT/US2011/039255) and precursors of sialic acid, including ManNAc (PCT/US2011/039058) for the treatment of nephrotic syndrome. He may benefit financially from these patents in the future.

Rama Natarajan, PhD, FAHA, FASN
Endowed Professor and Associate Chair
Department of Diabetes
Director, Division of Molecular Diabetes Research
Beckman Research Institute of City of Hope
USA
1500 East Duarte Road, Duarte, CA 91010
Phone: 626-256-4673 ext 62289
Fax: 626-301-8136
Email: RNatarajan@coh.org

Dr. Natarajan reports no disclosures.

Howard Trachtman, MD
Director, Division of Pediatric Nephrology
NYU Langone Medical Center
Dr. Trachtman reports the following disclosures: I am a consultant for Retrophin Inc., Kaneka Corp., and Otsuka Inc. I am on the ABP Nephrology Sub-board Self Assessment program and I am the editor for the NephSAP issue on Pediatric Nephrology.

Lauren Brasile, PhD
Chief Scientific Officer
BREONICS, Inc.
USA
7a Harriman Campus Road
Albany, NY 12206
Phone: 518-459-2112
Email: lbrasile@citlink.net

Dr. Brasile reports no disclosures.

Robert A. Star, MD
Director, KUH
Division of Kidney, Urologic, & Hematologic Diseases
NIDDK, National Institutes of Health
Building 2DEM, Room 625
6707 Democracy Blvd.
Bethesda, MD 20817
Tel: 301-496-6325
Fax: 301-480-3510
Email: starr@mail.nih.gov

Dr. Star reports no disclosures.

Krystyna E. Rys-Sikora, Ph.D.
Program Director, AKI, CKD, Basic Science
Program Director, Kidney Institutional Training Programs
Division of Kidney, Urologic and Hematologic Diseases
National Institute of Diabetes, Digestive and Kidney Diseases
6707 Democracy Blvd
Two Democracy Plaza, Room 613
Bethesda, MD 20892
Phone: 301-451-4770
Fax: 301-480-3510
E-mail: Krystyna.Rys-Sikora@nih.gov

Dr. Rys-Sikora has no disclosures.
Michael F. Flessner, MD, PhD
Division of Kidney, Urologic, & Hematologic Diseases
NIDDK, National Institutes of Health
Building 2DEM, Room 641
6707 Democracy Blvd.
Bethesda, MD 20817
Phone: 301-451-4901
Email: flessnermf@mail.nih.gov

Dr. Flessner reports no disclosures.

Marva Moxey-Mims, MD
KUH Deputy Director for Clinical Research
Director, Pediatric Nephrology and Renal Centers Programs
NIH, NIDDK, DKUH
6707 Democracy Blvd
Two Democracy Plaza, Room 639
Bethesda, MD 20892
Phone: (301) 594-7717
Fax: (301) 480-3510
E-mail: mm726k@nih.gov

Dr. Moxey-Mims reports no disclosures.