Editorials

999 Appreciation, Gratitude, and Looking Forward
Gary Curhan

1001 Balancing Cancer Risk and Efficacy of Using Cyclophosphamide to Treat Idiopathic Membranous Nephropathy
Sana Khan and W. Kline Bolton
See related article on page 1066.

1005 Incentives for Caution: The In-Center Hemodialysis Consumer Assessment of Healthcare Providers and Systems Survey and Experience of Care
Ezra Gabbay and Klemens B. Meyer
See related article on page 1099.

Original Articles

Acute Kidney Injury / Acute Renal Failure

1007 Epidemiology and Outcomes in Community-Acquired Versus Hospital-Acquired AKI
Alexa Wonnacott, Soma Meran, Bethan Amphlett, Bnar Talabani, and Aled Phillips

1015 Serum Creatinine Changes Associated with Critical Illness and Detection of Persistent Renal Dysfunction after AKI
John R. Prowle, Ivana Kolic, Jeremy Purdell-Lewis, Rachelle Taylor, Rupert M. Pearse, and Christopher J. Kirwan

Chronic Kidney Disease

1024 Temporal Trajectory of B-Type Natriuretic Peptide in Patients with CKD Stages 3 and 4, Dialysis, and Kidney Transplant
Matthew A. Roberts, David L. Hare, Ken Sikaris, and Francesco L. Ierino

Clinical Nephrology

1033 IgA Nephropathy with Minimal Change Disease
Leal C. Herlitz, Andrew S. Bomback, Michael B. Stokes, Jai Radhakrishnan, Vivette D. D’Agati, and Glen S. Markowitz

1040 Comparison of Methylprednisolone Plus Prednisolone with Prednisolone Alone as Initial Treatment in Adult-Onset Minimal Change Disease: A Retrospective Cohort Study
Maki Shinzawa, Ryohei Yamamoto, Yasuyuki Nagasawa, Susumu Oseto, Daisuke Mori, Kodo Tomida, Terumasa Hayashi, Masaaki Izumi, Megumu Fukunaga, Atsushi Yamauchi, Yoshiharu Tsubakihara, and Yoshitaka Isaka

Epidemiology and Outcomes

1049 Associations of FGF-23 and sKlotho with Cardiovascular Outcomes among Patients with CKD Stages 2–4
Sarah Seiler, Kyrill S. Rogacev, Heinz J. Roth, Pagah Shafein, Insa Emrich, Stefan Neuhaus, Jürgen Floege, Danilo Fliser, and Gunnar H. Heine

1059 Association of a Polymorphism in a Gene Encoding a Urate Transporter with CKD Progression
Alessandra Testa, Francesca Mallamaci, Belinda Spoto, Anna Pisano, Maria Cristina Sanguedolce, Giovanni Tripepi, Daniela Leonards, and Carmine Zoccali
1066 Cancer Risk after Cyclophosphamide Treatment in Idiopathic Membranous Nephropathy
Jan A.J.G. van den Brand, Peter R. van Dijk, Julia M. Hofstra, and Jack F.M. Wetzels
See related editorial on page 1001.

ESRD and Chronic Dialysis

1074 Peritoneal Dialysis–Related Peritonitis due to Coagulase-Negative Staphylococcus: A Review of 115 Cases in a Brazilian Center
Carlos Henrique Camargo, Maria de Lourdes Ribeiro de Souza da Cunha, Jacqueline Costa Teixeira Caramori, Alessandro Lia Mondelli, Augusto Cezar Montelli, and Pasqual Barrett

1082 Associations of Body Size and Body Composition with Functional Ability and Quality of Life in Hemodialysis Patients
Macy Martinson, T. Alp Ikizler, Glen Morrell, Guo Wei, Nestor Almeida, Robin L. Marcus, Rebecca Filipowicz, Tom H. Greene, and Srinivasan Beddhu

1091 The Association between Peritoneal Dialysis Modality and Peritonitis
Patrick G. Lan, David W. Johnson, Stephen P. McDonald, Neil Boudville, Monique Borlace, Sunil V. Badve, Kamal Sud, and Philip A. Clayton

1099 Evaluation of the Consumer Assessment of Healthcare Providers and Systems In-Center Hemodialysis Survey
See related editorial on page 1005.

Genetics

1109 Rapid Detection of Monogenic Causes of Childhood-Onset Steroid-Resistant Nephrotic Syndrome
Svjetlana Lovric, Humphrey Fang, Virginia Vega-Warner, Carolin E. Sadowski, Heon Yung Gee, Jan Halbritter, Shazia Ashraf, Pawaree Saisawat, Neveen A. Soliman, Jemeela A. Kari, Edgar A. Otto, and Friedhelm Hildebrandt, on behalf of the Nephrotic Syndrome Study Group

Attending Rounds

1117 Attending Rounds: A Patient with Accelerated Hypertension and an Atrophic Kidney
Stephen C. Textor

Public Policy Series

1124 Guiding Principles and Checklist for Population-Based Quality Metrics

Special Features

1132 American Society of Nephrology Quiz and Questionnaire 2013: Electrolyte and Acid-Base
Biff F. Palmer, Mark A. Perazella, and Michael J. Choi

1138 Glomerular Disease: Looking beyond Pathology
Roger C. Wiggins, Charles E. Alpers, Lawrence B. Holzman, John C. He, David J. Salant, Sumant S. Chugh, Rama Natarajan, Howard Trachtman, Lauren Brasile, Robert A. Star, Krystyna E. Rys-Sikora, Marva M. Moxey-Mims, and Michael F. Flessner, on behalf of the Kidney Research national Dialogue

1141 Pediatric Kidney Disease: Tracking Onset and Improving Clinical Outcomes
Carlton M. Bates, Jennifer R. Charlton, Maria E. Ferris, Friedhelm Hildebrandt, Deborah K. Hoshizaki, Bradley A. Warady, and Marva M. Moxey-Mims, on behalf of the Kidney Research National Dialogue
Propagating the Nephrology Research Workforce: A Kidney Research National Dialogue Training Commentary


Erratum

Correction

On the Cover
What’s the diagnosis? A 21-year-old woman presented to the Emergency Department with a complaint of acute onset of right flank pain. Exam revealed right flank tenderness, dipstick urinalysis was positive for blood and leukocyte esterase, and CT scan demonstrated a 6 mm stone in the right mid-ureter. Urine microscopy was notable for isomorphic red blood cells, white blood cells and hexagonal crystals (cover image), consistent with cystine. Subsequent stone analysis confirmed cystine as the major component.

Cystinuria is an autosomal recessive genetic cause of kidney stones, which are composed of cystine, a homodimer of the amino acid cysteine, which occurs in 1 in 7000–10,000 births. Several gene mutations have been noted in patients with cystinuria, including mutations in the SLC3A1 and SLC7A9 genes. Mutations in either of these genes disrupt the amino acid transporter protein complex function in the proximal tubule, reducing reabsorption of cystine and other dibasic amino acids.

Cystine stones are found in 1 to 2 percent of stone formers, although a higher percentage (5%) is noted in children with stones. Because it is very difficult to reduce the amount of cystine being excreted, prevention of recurrent cystine stones is aimed at increasing the solubility of cystine in the urine. As the solubility of cystine in urine is pH dependent, an alkaline pH is desired. General recommendations to prevent cystine stone formation include: 1) increased fluid intake, 2) reduced intake of sodium (<50 mmol/day) and protein (0.8–1.0 g/kg per d), and 3) urinary alkalinization (urine pH 7 or greater) with potassium citrate (typically 60–80 mEq/day in 3 divided doses). If these measures are not sufficient, tiopronin, a thiol-containing drug, may reduce stone formation by covalently binding to the cystine molecule and increasing its solubility. Image and text provided by Jose Antonio Tesser Poloni, Irmandade da Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil, and Mark A. Perazella, Yale University School of Medicine.