Effects of Exercise and Lifestyle Intervention on Cardiovascular Function in CKD

Erin J. Howden,*† Rodel Leano,* William Petchey,†‡ Jeff S. Coombes,*‡ Nicole M. Isbel,†‡ and Thomas H. Marwick§

Summary

Background and objectives CKD is associated with poor cardiorespiratory fitness (CRF). This predefined substudy determined the effect of exercise training and lifestyle intervention on CRF and explored the effect on cardiovascular risk factors and cardiac and vascular function.

Design, setting, participants, & measurements Between February 2008 and March 2010, 90 patients with stage 3–4 CKD were screened with an exercise stress echocardiogram before enrollment. Patients (n=83) were randomized to standard care (control) or lifestyle intervention. The lifestyle intervention included multidisciplinary care (CKD clinic), a lifestyle program, and aerobic and resistance exercise training for 12 months. CRF (peak VO₂), left ventricular function, arterial stiffness, anthropometric, and biochemical data were collected at baseline and 12 months.

Results Ten percent of randomized patients had subclinical myocardial ischemia at screening and completed the study without incident. There was no baseline difference among 72 patients who completed follow-up (36 in the lifestyle intervention group and 36 in the control group). The intervention increased peak VO₂ (2.8±0.7 ml/kg per minute versus −0.3±0.9 ml/kg per minute; P=0.004). There was small weight loss (−1.8±4.2 kg versus 0.7±3.7 kg; P=0.02) but no change in BP or lipids. Diastolic function improved (increased e′ of 0.75±1.16 cm/s versus −0.47±1.0 cm/s; P=0.001) but systolic function was well preserved and did not change. The change in arterial elastance was attenuated (0.11±0.76 mmHg/ml versus 0.76±0.96 mmHg/ml; P=0.01). Δ peak VO₂ was associated with group allocation and improved body composition.

Conclusions Exercise training and lifestyle intervention in patients with CKD produces improvements in CRF, body composition, and diastolic function.

Introduction

Patients with CKD have increased prevalence of cardiovascular disease (CVD), which is the leading cause of mortality and morbidity in this population (1). Obesity, type 2 diabetes, and hypertension are common, and contribute to the progression of kidney dysfunction and cardiovascular risk. Conventional treatment strategies are only partially effective in improving outcomes and are frequently underutilized (2). Alternate strategies to address these risks are required. CKD patients have reduced cardiorespiratory fitness (CRF) compared with the general population (3), and those CKD patients who are inactive (4) have an increased risk of mortality. Exercise can be effective in management of cardiovascular risk factors (5,6); however, there are few long-term exercise studies in the CKD population (7).

Abnormal left ventricular (LV) structure (LV hypertrophy and dilation) and impaired diastolic and systolic function are strongly associated with morbidity and mortality in ESRD (8). Patients with early CKD have relatively preserved systolic function but demonstrate increased risk of diastolic dysfunction (9). Newer echocardiographic techniques such as tissue Doppler imaging provide information about myocardial tissue velocities associated with relaxation (e′) and contraction (s′) of the LV. Two-dimensional speckle tracking imaging allows the determination of myocardial deformation or change in length of the myocardial fiber over time, referred to as global strain and strain rate. Global strain has been shown to be a powerful independent predictor of mortality in patients with preserved systolic function (10), and is reduced in patients with CKD.

There is increasing recognition of the importance of the bidirectional interaction between the arterial system and the heart (“ventricular-vascular coupling”). This matching ensures that cardiac performance is optimized during physiologic stress. Effective arterial elastance (Eₐ) measures the net arterial load imposed on the LV. LV end systolic elastance (Eₛₑₐₖ₉) is a load-independent measure of LV performance. At rest, Eₐ/Eₛₑₐₖ₉ is maintained within a narrow range in healthy individuals, allowing the optimal transfer of blood from the LV to the periphery. Patients with CKD are at risk of increased vascular stiffness via
multiple mechanisms (hypertension, diabetes, vascular calcification). Therefore, resting LV filling pressure is increased and LV contractility is enhanced in CKD in order to maintain E/A/E_LV and cardiac performance (11). Unfit individuals have less favorable cardiac filling profiles at rest than active participants (12), and exercise training can elicit positive changes in diastolic (13) and vascular function (14) in patients with existing CVD.

The aim of this study was to investigate the effect of exercise training and lifestyle intervention on CRF (change in peak VO2 at 12 months), secondary aims were to assess the effect on cardiovascular risk factors, cardiac function, arterial stiffness, and ventricular-vascular interaction in CKD.

Materials and Methods

Patient Selection
Detailed methods are available in the Supplemental Material. This study was a prespecified substudy of an ongoing open-label randomized controlled trial (LANDMARK III), which is a 3-year study comparing the effect of a nurse practitioner–led model of care with standard nephrologic care on cardiovascular risk factors. The study received approval from the Princess Alexandra Human Research Ethics Committee (HREC 2007/190) and University of Queensland Medical Research Ethics Committee (MREC 2008000184), and was registered at www.anzctr.org.au (Registration Number ANZCTR 12608000337370). Patients were eligible for inclusion if they were aged 18–75 years, had moderate CKD (estimated GFR [eGFR] 25–60 ml/min per 1.73 m2), and had one or more uncontrolled cardiovascular risk factors such as BP exceeding target, overweight (body mass index [BMI] >25 kg/m2), poor diabetic control (hemoglobin A1c >7%), or lipids exceeding target. Exclusion criteria were as follows: intervention for or symptomatic coronary artery disease (within 3 months), current heart failure (New York Heart Association class I111 and IV) or significant valvular heart disease, pregnant or planning to become pregnant, and life expectancy or anticipated time to dialysis or transplant <6 months. Participants provided written informed consent and the study complied with the Declaration of Helsinki.

Outcomes
The primary outcome of this substudy was change in CRF (as measured by peak VO2) at 12 months. Secondary outcomes were change in cardiovascular risk factors (weight, BP, lipids), cardiac function (measured by systolic [s'] and diastolic [c’] tissue velocity), arterial stiffness (augmentation index and aortic pulse wave velocity), and ventricular-vascular coupling (arterial and ventricular elastance).

Baseline Assessment and Random Assignment
Patients were screened for inducible myocardial ischemia by exercise stress echocardiography (ESE). Patients with an abnormal ESE were reviewed by a cardiologist and randomized if deemed safe to participate in a supervised exercise program. Patients were assigned to either the lifestyle intervention group or to the usual care control group in a 1:1 ratio using a computer random assignment program. Groups were stratified by renal function (eGFR high [>44] or low [≤44] ml/min per 1.73 m2), sex, and diabetes status.

Control Group
The control group received standard nephrologic care, which included review by a nephrologist, recommended lifestyle modification but no specific information or education, and referral to an allied health professional on an ad hoc basis.

Exercise Training and Lifestyle Intervention
In addition to usual care, cardiovascular risk factor management was provided by a multidisciplinary clinic (including a CKD nurse practitioner, dietitian, exercise physiologist, diabetic educator, psychologist, and social worker) and targeted risk factors to national guidelines (15,16).

The exercise training component involved 150 minutes of moderate intensity exercise per week, with 8 weeks of training supervised by an accredited clinical exercise physiologist. Patients attended gym sessions two to three times per week. The sessions included a warm-up, 20–30 minutes of aerobic activity using a treadmill, stationary bike, or rowing ergometer, and whole-body resistance training with machines and free weights. On completion of the gym-based training, patients began a home-based program and were provided a booklet depicting resistance exercise using Thera-Bands and a Swiss ball. Regular contact was maintained via telephone and Email. Participants were questioned on their ability to maintain the prescribed exercise; if they identified difficulty, they were encouraged to attend gym-based refresher visits. Patients performed exercise at a moderate intensity, with perceived exertion of 11–13 on the 20-point Borg scale (17), and progression was tailored individually.

Lifestyle intervention involved 4 weeks of group behavior and lifestyle modification facilitated by a dietitian and psychologist. The program focused on sustainable diet and behavior change to assist with weight loss. The dietitian therapy complied with the Evidence-Based Practice Guidelines for Nutritional Management of CKD for patients with eGFR between 25 and 60 ml/min per 1.73 m2 (18).

Outcome Measures
All measures were obtained before randomization and after 12 months of intervention.

Biochemical Analyses. After an overnight fast, patients provided blood samples for biochemical analysis. Kidney function was determined as the eGFR using the Modified Diet in Renal Disease formula based on the isotope dilution mass spectrometry standardized creatinine assay (MDRD175) (19).

Maximal Exercise Capacity. CRF was assessed as peak VO2. Testing was performed according to American College of Sports Medicine guidelines for exercise testing (20). CRF was derived from breath-by-breath indirect calorimetry (Vmax29c; SensorMedics, Yorba Linda, CA) and recorded as the peak 20-second average VO2 during the final minute of exercise.

Echocardiography. Conventional two-dimensional echocardiography and pulse wave tissue Doppler imaging was performed at rest using standard equipment (Vivid 7;
General Electric Medical Systems, Milwaukee, WI). All echocardiographic parameters were measured offline in batches by an observer blinded to treatment allocation and previous results.

Evaluation of Diastolic and Systolic Function. Systolic dysfunction was identified on the basis of an ejection fraction <50%. Diastolic dysfunction was categorized as normal diastolic function, delayed relaxation (21), pseudo normal (22,23), or restrictive diastolic filling (24).

Arterial Compliance. Arterial waveforms were acquired as previously published (25) using commercial software (SphygmoCor 8.1; AtCor Medical, Sydney, Australia). Central arterial stiffness was estimated in duplicate by aortic pulse wave velocity (PWV). PWV was acquired with electrocardiography-gated sequential tonometry at the carotid and femoral sites.

Ventricular-Vascular Interaction. Measures were derived noninvasively using a combination of echocardiography for end systolic volume (ESV) and tonometry for end systolic pressure (ESP). Arterial elastance (E_A) was calculated as the ratio of ESP and stroke volume (SV) E_A= (ESP / SV), and end systolic elastance (E_SV) was calculated E_SV = (ESP / ESV – V₀), where V₀ is the x-axis intercept of the pressure-volume relationship (26). The value of V₀ is considered to be negligible compared with ESV and is therefore approximated as zero (26). These methods have been validated against invasive measures of ventricular pressure-volume loops (27,28).

Dietary Assessment. Dietary assessment was conducted using three-day diet records of a subset of participants. Dietary intake data were analyzed using FoodWorks version 7 using NUTTAB 2010 database (Xyris Software, Australia) for total energy (kcal), macronutrient, and dietary fiber intake.

Power Analyses
Baseline peak Vo2 was assumed to be 22.0±6.0 ml/kg per minute, and a 20% increase (effect size of 0.73) in the intervention group compared with the control participants would be clinically significant. Therefore, we required 41 participants in each group to have 90% power to detect a difference between groups (α=0.05); however, to account for drop out, we planned to recruit 90 patients.

Statistical Analyses
Analysis was performed on available data. Data were checked for normality using the Kolmogorov-Smirnov test. Results are expressed as mean ± SD, median (interquartile range), or n (%) for categorical data. Baseline characteristics and change scores were compared between groups using independent t tests and chi-squared tests for

Figure 1. Consolidated Standards of Reporting Trials diagram.
categorical variables. Pearson and Spearman correlations were performed between change in main outcome measure and other secondary measures. Data were analyzed using standard commercially available statistical software (SPSS version 18; PASW, Chicago, IL). Statistical significance was \(P \leq 0.05 \).

Results

Patient Characteristics

Ninety patients were screened between February 2008 and March 2010. Twelve percent (\(n=11 \)) of patients were identified as having abnormal wall motion suggestive of subclinical ischemia on ESE and were reviewed by a cardiologist before randomization. Nine patients were cleared, enrolled in the study, and completed the study without incident. In total, seven screened patients were not randomized, three did not meet inclusion criteria due to kidney function outside of range, one had significant inducible ischemia on baseline testing (suitable for medical management only and the patient’s cardiologist declined the patient’s participation), and three patients withdrew consent before randomization (including one patient requiring bypass surgery who no longer wished to participate), meaning that 83 patients were randomized. Of the 83 patients randomized, follow-up testing was completed in 72 patients (Figure 1).

The baseline characteristics of this patient group are summarized in Table 1 and there were no significant group differences at baseline. Men comprised the majority of the patient group and the prevalence of type 2 diabetes was 42%. Diastolic dysfunction was evident in 61% of patients, whereas 8% of patients had evidence of systolic heart failure (Table 1). The lifestyle intervention group attended 70% of the supervised gym-based training and five additional visits (range, 0–10) during the home-based maintenance phase.

Responses to Intervention

Exercise Capacity. At baseline, peak \(\dot{V}O_2 \) (24.7±8.4 ml/kg per minute in the lifestyle intervention group versus 23.6±6.2 ml/kg per minute in the control group) was similar between groups. Compared with normative values, 47% of the control group met their age-predicted exercise capacity and 41% in the lifestyle intervention group (Figure 2). The intervention was effective in improving peak \(\dot{V}O_2 \) as evident by an 11% increase in the lifestyle intervention group and 1% decrease in the control (Figure 2). Furthermore, at 12 months, an additional 10 patients in the lifestyle intervention group met their age-predicted exercise capacity, which was significantly greater than controls (\(P=0.01 \)). The hemodynamic response to exercise was similar between groups at baseline. Maximal systolic BP decreased in both groups at 12 months; however, the change was significantly greater in the control group (Table 2).

Cardiovascular Risk Factors. Table 3 outlines changes in body habitus (weight, BMI, waist circumference) in

Table 1. Baseline demographics, causes of kidney disease, myocardial status, and medication usage of patients randomized to lifestyle intervention or control groups that completed a 12-month follow-up visit

<table>
<thead>
<tr>
<th></th>
<th>Lifestyle Intervention Group ((n=36))</th>
<th>Control Group ((n=36))</th>
<th>Lost to Follow-Up ((n=11))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>12 (33)</td>
<td>15 (42)</td>
<td>6 (45)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>60.2±9.7</td>
<td>62.0±8.4</td>
<td>54.4±10.1</td>
</tr>
<tr>
<td>eGFR (ml/min per 1.73 m²)</td>
<td>38.4±8.8</td>
<td>39.4±8.9</td>
<td>42.0±8.7</td>
</tr>
<tr>
<td>Cause of CKD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>9 (25)</td>
<td>11 (30)</td>
<td>4 (36)</td>
</tr>
<tr>
<td>Renovascular</td>
<td>6 (17)</td>
<td>5 (14)</td>
<td>—</td>
</tr>
<tr>
<td>GN</td>
<td>10 (28)</td>
<td>11 (30)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>APKD</td>
<td>—</td>
<td>3 (8)</td>
<td>1 (9)</td>
</tr>
<tr>
<td>Other</td>
<td>11 (30)</td>
<td>6 (17)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>15 (42)</td>
<td>15 (42)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>5 (14)</td>
<td>3 (8)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>Previous myocardial infarction</td>
<td>5 (14)</td>
<td>7 (24)</td>
<td>—</td>
</tr>
<tr>
<td>Systolic dysfunction</td>
<td>4 (11)</td>
<td>2 (5)</td>
<td>—</td>
</tr>
<tr>
<td>Diastolic dysfunction</td>
<td>19 (56)</td>
<td>25 (78)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>Medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACEi</td>
<td>17 (47)</td>
<td>19 (54)</td>
<td>6 (55)</td>
</tr>
<tr>
<td>ARB</td>
<td>22 (61)</td>
<td>20 (56)</td>
<td>5 (45)</td>
</tr>
<tr>
<td>β blocker</td>
<td>14 (39)</td>
<td>15 (42)</td>
<td>—</td>
</tr>
<tr>
<td>Calcium blocker</td>
<td>10 (28)</td>
<td>17 (47)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>Platelet inhibitor</td>
<td>19 (53)</td>
<td>14 (39)</td>
<td>1 (9)</td>
</tr>
<tr>
<td>Statin</td>
<td>23 (64)</td>
<td>24 (67)</td>
<td>5 (45)</td>
</tr>
<tr>
<td>Insulin</td>
<td>9 (25)</td>
<td>10 (28)</td>
<td>1 (9)</td>
</tr>
</tbody>
</table>

Values are mean ± SD for normally distributed values, or \(n \) (%) for categorical variables. There were no significant differences (\(P>0.05 \) for all) between groups at baseline. eGFR, estimated GFR; APKD, autosomal dominant polycystic kidney disease; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker.
between groups (Table 3). EA was significantly lower in the lifestyle intervention group than in the control group. Significantly more participants in the lifestyle intervention group at 12 months compared to baseline achieved age-predicted exercise capacity. *P=0.002. Significantly more participants in the lifestyle intervention group achieved age-predicted exercise capacity compared with the control group. #P=0.01 at 12 months. LI, lifestyle intervention.

response to the intervention, but not BP, lipids, or indicators of kidney function. Other electrolytes and indicators of kidney function, including phosphate and urine albumin/creatinine ratio, were unchanged by the intervention (data not included).

Echocardiography. Table 3 shows that there were no significant differences between echocardiographic characteristics at baseline. The intervention had a significant effect on diastolic tissue velocity (e') (Table 3), which increased by 20% in the lifestyle intervention group and decreased by 6% in the control group (P=0.001).

Arterial Compliance. There were no significant baseline differences between any peripheral or central BP parameters, and arterial stiffness parameters and the intervention had no statistically significant effect on these parameters (Table 3).

Ventricular-Vascular Interaction. At baseline, the ventricular-vascular interaction parameters were similar between groups (Table 3). EA was significantly lower in the lifestyle intervention group at 12 months (Table 3).

Dietary Analyses
Thirty-six participants completed diet records at baseline and follow-up (19 in the lifestyle intervention group and 17 in the control group). At baseline, total energy intake was similar between groups (7422±2872 kJ in the lifestyle intervention group versus 8002±2553 kJ in the control group). Macronutrient intake was not significantly different (% of total energy intake: protein lifestyle intervention, 20%±4% versus control, 19%±5%; carbohydrate lifestyle intervention, 41%±7% versus control, 43%±7%; fat lifestyle intervention, 32%±6% versus control 31%±6%;) and fiber (20.6±8.4 g versus control, 22.4±9.6 g) at baseline. There were no statistically significant differences between intervention and standard care groups for change in total energy intake or contribution of energy from macronutrients or fiber at 12 months.

Correlates of Functional Change
Change in peak VO2 was not correlated with age, sex, history of diabetes, subclinical ischemia, or history of myocardial infarction. Δ peak VO2 was associated with group allocation (r=0.31, P=0.01) and baseline peak VO2 (r=−0.28, P=0.03), Δ BMI (r=−0.36, P=0.003), Δ waist circumference (r=−0.26, P=0.04), and Δ body weight (r=−0.26, P=0.003).

Discussion
This study is the largest exercise training study in CKD patients to date and was a predefined substudy of the

Table 2. Results from the maximal exercise test

<table>
<thead>
<tr>
<th></th>
<th>Lifestyle Intervention Group</th>
<th>Control Group</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Δ 12 mo</td>
<td>Baseline</td>
</tr>
<tr>
<td>VO2 (ml/kg per minute)</td>
<td>24.0±8.27</td>
<td>2.8±4.3</td>
<td>23.0±6.3</td>
</tr>
<tr>
<td>Respiratory exchange quotient</td>
<td>1.06±0.1</td>
<td>0.02±0.1</td>
<td>1.04±0.1</td>
</tr>
<tr>
<td>Max heart rate (bpm)</td>
<td>149.4±27.1</td>
<td>15±20.9</td>
<td>144.9±19.3</td>
</tr>
<tr>
<td>Max systolic BP (mmHg)</td>
<td>178.4±20.4</td>
<td>−4.0±27.7</td>
<td>191.9±22.2</td>
</tr>
<tr>
<td>Max diastolic BP (mmHg)</td>
<td>81.6±11.3</td>
<td>−2.0±13.0</td>
<td>86.3±11.8</td>
</tr>
</tbody>
</table>

Values are mean ± SD for normally distributed values. P value indicates significant difference in Δ between groups.
Train exercise is effective in improving CRF in patients with CKD. Uremic cardiomyopathy, comprising LV dilation, hypertrophy, and impaired diastolic and systolic function, is common in late stage CKD and a strong predictor of adverse cardiovascular prognosis (8). Similar, but less severe abnormalities of LV function, as well as decreased arterial and ventricular elastance, exist in early CKD (11). The disturbances in myocardial function in CKD are likely multifactorial, with contributions from abnormal relaxation (due to myocardial disease and arterial disturbances leading to augmented wave reflection and increased ventriculoarterial interaction and decreased arterial and ventricular elastance). Exercise and Lifestyle Intervention in CKD, Howden et al. 1499
afterload) as well as fibrosis. The role of aerobic exercise training on cardiac function is controversial (12,36). A previous training study in patients with coronary heart disease and preserved systolic function reported that exercise lessened the severity of diastolic dysfunction (37). In this study, we have shown that exercise may be effective through improvement in e'.

This intervention ameliorated disturbances in the ventricular-arterial relationship. Disturbances in ventricular-arterial interaction, which are common in early stages of CKD (11), may be estimated indirectly by echocardiography (26,38). The matching between the LV and the arterial system at rest results in optimal transfer of blood from the LV to the periphery without excessive changes in pressure. The changes in arterial elastance were interesting. This finding suggests that better cardiac compensation with the maintenance of ventricular coupling ratio allows preservation of cardiac performance and may contribute to improved CRF in moderate CKD. It was of interest to note that there was deterioration in end systolic and end diastolic volumes in the control group that was abrogated in the lifestyle intervention group. Further work in this area is required.

We were unable to show any effect on arterial stiffness as measured by both aortic PWV and AIx. Improvement in arterial stiffness is associated with increased fitness (39,40) in the general population; however, the pathophysiology of vascular disease in CKD may be different and more resistant to change (41). Mustata et al. (35) demonstrated an improvement in arterial stiffness with exercise training in a small study of CKD patients. In contrast to our study, they did not use the standard measure of arterial stiffness (PWV) and included patients with more advanced CKD.

The findings from this study suggest that CKD patients, independent of preexisting comorbidities have the potential to improve CRF with exercise training. Improvement in CRF was associated with a small but significant improvement in body composition. The effect on clinical outcomes such as cardiovascular events needs to be tested in larger studies.

This study had a few limitations. We are unable to separate the individual components of the lifestyle intervention; however, the various components are likely to be complementary and integral to promoting successful lifestyle change. Changes in doses of medication were not recorded and it cannot be determined whether the lack of change in variables such as BP relates to modification of dose. However, the medication profile (number of patients taking different types of medication) did not significantly change in either group. We are unable to accurately quantify the amount of exercise performed by each participant in the lifestyle intervention group; however, the improvement in peak VO2 suggests that the participants in the lifestyle intervention group were regularly exercising.

We observed unexpected changes in the end diastolic volume and ESV in the control group. The analysis of pro-brain natriuretic peptide may help explain these interesting results; however, it was beyond the scope of this analysis. Our assessment of ventricular-arterial interaction was based on noninvasive techniques. These techniques have been validated (26), but are less accurate than invasive methods. Furthermore, our study was not powered to assess changes in arterial compliance although smaller studies have reported improvement with exercise training (35). No corrections for multiple comparisons of secondary outcomes have been made and the risk of a type I error may be increased. As such, results are exploratory and further studies are required.

In this study of patients with moderate CKD and well managed cardiovascular risk factors, randomization to the intervention led to significant improvements in CRF, body composition, and cardiovascular parameters at 12 months. Interestingly, improvement of CRF appeared to be more responsive to lifestyle intervention than dietary or weight change, despite the high prevalence of obesity in this group.

Acknowledgments

The authors thank research nurses Karen Sonnenburg and Lisa Ditterich for their time and effort in recruiting, testing, and maintaining participants in the trial.

This research was supported by the National Health and Medical Research Council–funded Centre for Clinical Research Excellence–Vascular and Metabolic Health of the University of Queensland, as well as the Department of Nephrology at Princess Alexandra Hospital.

Disclosures

None.

References

Received: October 3, 2012 Accepted: April 12, 2013

Published online ahead of print. Publication date available at www.cjasn.org.

This article contains supplemental material online at http://cjasn.asnjournals.org/lookup/suppl/doi:10.2215/CJN.10141012/-/DCSupplemental.