Collapsing glomerulopathy (CG) describes a pattern of glomerular injury, the main feature of which is severe injury to podocytes with loss of markers of differentiation, proliferation of podocytes and/or parietal epithelial cells filling Bowman’s space, and global or segmental collapse of the capillary tuft (1–4). Multiple etiologies of CG have been described, including certain viral infections (most notably HIV but also parvovirus B19 and hepatitis C), drugs, gene mutations, and vascular occlusion, in addition to idiopathic forms (4–6).

In this issue of CJASN, Salvatore et al. (7) report a retrospective series of 19 patients with systemic lupus erythematosus (SLE), none known to be positive for HIV, hepatitis C, or parvovirus, who underwent a renal biopsy for an indication of proteinuria and often renal insufficiency that showed CG, with or without concurrent lupus nephritis. These findings raise important questions regarding the pathogenesis of CG in this clinical setting and the relationship of these lesions to the previously described entity of lupus podocytopathy (8), as well as issues of differential diagnosis on renal biopsy.

As detailed by Salvatore et al. (7), CG occurring in the setting of SLE shares certain demographic, clinical, morphologic, and immunohistologic features with idiopathic and HIV-associated CG (HIVAN): a strong association with persons of African descent; a typical clinical presentation with heavy proteinuria and often renal insufficiency; frequent progression to ESRD, especially in the absence of a therapy-induced remission of proteinuria; frequent tubular injury and tubulo-interstitial scarring in addition to the characteristic glomerular lesions of CG; loss of certain podocyte differentiation markers, especially in glomeruli with CG lesions; and proliferation of glomerular epithelial cells as indicated by Ki67 staining. However, there are also differences, especially at a molecular level, that suggest unique pathogenic aspects of CG in SLE. In the majority of cases of the latter, glomerular staining for WT-1 was preserved, and loss of synaptopodin was not global as is typical in idiopathic CG and HIVAN (4), but rather limited to collapsed segments (7). This more limited loss of podocyte differentiation markers is seen in “reactive” lesions of CG such as those associated with vascular occlusion (4), although in only 1 of the 19 cases of Salvatore et al. could the CG be potentially attributed to a thrombotic microangiopathy.

The pathogenesis of the remaining cases of CG in patients with SLE presented by Salvatore et al., as well as in prior reports (8–14), remains unclear, although it should be noted that the great majority of these patients had active systemic disease (often a lupus flare) and a significant number had concurrent lupus nephritis, albeit usually mild (most often International Society of Nephrology/Renal Pathology Society class II). This certainly suggests involvement of humoral and/or cell-mediated immunity, both of which have been implicated in the pathogenesis of podocytopathies and of SLE (15–19). The relative contributions of various immune pathways may play a key role in determining the responsiveness of these lesions of CG to therapy. In this regard, it is of interest that, among those patients of Salvatore et al. with follow-up data, four of five who had CG with concurrent lupus nephritis had a complete or partial response to therapy (pulse steroids ± mycophenolate mofetil, intravenous immunoglobulin [IVIG], plaquenil, and/or azathioprine), with only one of five developing ESRD. By contrast, only two of six treated patients without concurrent lupus nephritis had a complete or partial therapeutic response, with four of six developing ESRD. Deciphering the involved pathways of cell-mediated and humoral immunity, as well as cytokines and other mediators involved, may thus offer clinicians insight as to which therapeutic approaches might be most effective in treating patients with SLE and CG, with or without concurrent lupus nephritis. The treatments given the patients of Salvatore et al., with the exception of one patient given IVIG, appear directed more at T cell-mediated than antibody-mediated processes, and the one patient treated with IVIG did show a substantial reduction in proteinuria and stable, although reduced, renal function 2 years after biopsy. However, this patient, like the majority of those who did not develop ESRD, had reasonably preserved renal function (serum creatinine <2 mg/dl) at the time of biopsy.

A number of authors have previously described glomerular lesions in patients with SLE characterized by proteinuria and extensive podocyte foot process effacement with minimal changes, noncollapsing focal
segmental glomerulosclerosis (FSGS), or mesangial proliferative GN by light microscopy without subepithelial or subendothelial immune deposits—so-called lupus podocytopathy (8,9,20–23). Unlike the case with CG in patients with SLE, patients with lupus podocytopathy most often show some therapeutic response to steroids and/or other immunosuppressive therapy and only infrequently progress to ESRD within the first few months to years after biopsy, although the responses are often only partial remissions, even in patients with minimal histologic lesions (8,9,20,21). The relationship between lupus podocytopathy and the CG lesions described by Salvatore et al. and others (7–14) remains unclear, much as is the case with collapsing and noncollapsing forms of idiopathic FSGS, although in all of these lesions the primary target of injury is likely to be the podocyte, and indeed CG may represent an extreme form of lupus podocytopathy. Finally, the pathologic diagnosis of CG on renal biopsy in patients with SLE is not always straightforward, especially if there is concurrent lupus nephritis, as illustrated in Figure 1. The proliferated epithelial cells in Bowman’s space in CG (Figure 1A) often have a crescent-like appearance (thus the term “pseudocrescent”), raising the differential diagnosis of lupus nephritis with crescents (Figure 1B) in biopsies showing concurrent lupus nephritis and of pauci-immune (anti–neutrophil cytoplasmic antibody [ANCA] associated) crescentic GN in biopsies without significant endocapillary cell proliferation and few or no immune complex deposits without subendothelial deposits; the latter (Figure 1C) has been described in a small subset of patients with SLE (24). There are certain morphologic features that are useful in differentiating these lesions even by light microscopy, such as prominent protein resorption droplets within glomerular epithelial cells in CG (Figure 1A), endocapillary proliferation in lupus nephritis (Figure 1B), and frequent but variable presence of fibrinoid necrosis (Figure 1B), spindle-shaped cells, and fibrin (Figure 1C), as well as segmental breaks in Bowman’s capsule in true crescentic lesions. However, even with immunofluorescence and electron microscopy, some biopsies may still prove quite difficult to interpret, noting that these lesions may potentially occur concurrently, that a small fraction of cases of lupus nephritis with crescents may have few immune complex deposits (25), that modest numbers of such deposits may be present in ANCA-associated crescentic GN (26), and that 10%–20% of cases of pauci-immune crescentic GN are ANCA negative (27). It should be stressed here that CG appears to represent a rather uncommon renal manifestation of SLE; the 19 patients in the series of Salvatore et al. (7) were pooled from five large referral centers over an 8-year interval. However, the therapeutic and prognostic implications of correctly identifying this lesion and differentiating it from lupus nephritis with crescents and pauci-immune crescentic GN are potentially important, particularly as we continue to learn more about the underlying molecular pathology of both lupus nephritis and CG in the setting of SLE.

Disclosures

None.

References


Published online ahead of print. Publication date available at www.cjasn.org.

See related article, “Collapsing Glomerulopathy in 19 Patients with Systemic Lupus Erythematosus or Lupus-Like Disease,” on pages 914–925.