Editorials

1545 Nephrology and the Percutaneous Renal Biopsy: A Procedure in Jeopardy of Being Lost Along the Way
Stephen M. Korbet
See related article on page 1591.

1548 Accessing the Access
Deborah Zimmerman and Charmaine E. Lok
See related article on page 1632.

1551 Initiating and Completing the Kidney Transplant Evaluation Process: The Red Queen’s Race
Christina M. Yuan, Erin M. Bohen, and Kevin C. Abbott
See related article on page 1639.

Original Articles

Chronic Kidney Disease

1553 Usability of a CKD Educational Website Targeted to Patients and Their Family Members
Clarissa J. Diamantidis, Marni Zuckerman, Wanda Fink, Peter Hu, Shiming Yang, and Jeffrey C. Fink

1561 Association of Reduced Renal Function with Hepatitis B Virus Infection and Elevated Alanine Aminotransferase
Jianfang Cai, Xiaohong Fan, Lijun Mou, Bixia Gao, Xuejiao Liu, Jinhong Li, Lili Liu, Haiyun Wang, Zengyu Guo, Xiaoqing Liu, Hang Li, Xuewei Li, and Xuewang Li

1567 Urinary Biomarkers in Obstructive Nephropathy
Peter Trnka, Larissa Ivanova, Michael J. Hiatt, and Douglas G. Matsell

Clinical Nephrology

1576 Two-Year Follow-Up of a Prospective Clinical Trial of Cyclosporine for Frequently Relapsing Nephrotic Syndrome in Children
Kenji Ishikura, Norishige Yoshikawa, Hitoshi Nakazato, Satoshi Sasaki, Kazumoto Iijima, Koichi Nakanishi, Takeshi Matsuyama, Shuichi Ito, Nahoko Yata, Takashi Ando, and Masataka Honda, for the Japanese Study Group of Renal Disease in Children

1584 Pulmonary Embolism in Patients with CKD and ESRD
Gagan Kumar, Ankit Sakhuja, Amit Taneja, Tilottama Majumdar, Jayshil Patel, Jeff Whittle, and Rahul Nanchal, for the Milwaukee Initiative in Critical Care Outcomes Research (MICCOR) Group of Investigators

1591 Safety and Complications of Percutaneous Kidney Biopsies in 715 Children and 8573 Adults in Norway 1988–2010
Camilla Tøndel, Bjørn Egil Vikse, Leif Bostad, and Einar Svarstad
See related editorial on page 1545.

Epidemiology and Outcomes

1598 Association of Dialysis Modality with Risk for Infection-Related Hospitalization: A Propensity Score-Matched Cohort Analysis
Jean-Philippe Lafrance, Elham Rahme, Sameena Iqbal, Naoual Elfitouh, Michel Vallée, Louis-Philippe Laurin, and Denis Ouimet
1606
Vascular Disease, ESRD, and Death: Interpreting Competing Risk Analyses

Morgan E. Grams, Josef Coresh, Dorry L. Segev, Lauren M. Kucirka, Hocine Tighiouart, and Mark J. Sarnak

ESRD and Chronic Dialysis

1615
Hemodialysis-Induced Regional Left Ventricular Systolic Dysfunction: Prevalence, Patient and Dialysis Treatment-Related Factors, and Prognostic Significance

Solmaz Assa, Yoran M. Hummel, Adriaan A. Voors, Johanna Kuipers, Ralf Westerhuis, Paul E. de Jong, and Casper F.M. Franssen

1624
Dialysis Search Filters for PubMed, Ovid MEDLINE, and Embase Databases

Arthur V. Iansavichus, R. Brian Haynes, Christopher W.C. Lee, Nancy L. Wilczynski, Ann McKibbon, Salimah Z. Shariff, Peter G. Blake, Robert M. Lindsay, and Amit X. Garg

1632
A Randomized Trial Comparing Buttonhole with Rope Ladder Needling in Conventional Hemodialysis Patients

Jennifer M. MacRae, Sofia B. Ahmed, Rajneet Atkar, and Brenda R. Hemmelgarn

See related editorial on page 1548.

1639
Impact of Navigators on Completion of Steps in the Kidney Transplant Process: A Randomized, Controlled Trial

Catherine Sullivan, Janeen B. Leon, Srilakha S. Sayre, Marquisha Marbury, Michael Ivers, Julie A. Pencak, Kenneth A. Bodziak, Donald E. Hricik, E. Janie Morrison, Jeffrey M. Albert, Sankar D. Navaneethan, Christina M. Delos Reyes, and Ashwini R. Sehgal

See related editorial on page 1551.

1646
Association of Interleg BP Difference with Overall and Cardiovascular Mortality in Hemodialysis

Szu-Chia Chen, Jer-Ming Chang, Yi-Chun Tsai, Jer-Chia Tsai, Ho-Ming Su, Shang-Jyh Hwang, and Hung-Chun Chen

Health Services Research

1655
Exploring the Association between Macroeconomic Indicators and Dialysis Mortality

Anneke Kramer, Vianda S. Stel, Fergus J. Caskey, Benedicte Stengel, Robert F. Elliott, Adrian Covic, Claudia Geue, Ana Cusumano, Alison M. MacLeod, and Kitty J. Jager

Special Features

1664
Critical and Honest Conversations: The Evidence Behind the “Choosing Wisely” Campaign Recommendations by the American Society of Nephrology

Amy W. Williams, Amy C. Dwyer, Allison A. Eddy, Jeffrey C. Fink, Bertrand L. Jaber, Stuart L. Linas, Beckie Michael, Ann M. O’Hare, Heidi M. Schaefer, Rachel N. Shaffier, Howard Trachtman, Daniel E. Weiner, and Ronald J. Falk, on behalf of the American Society of Nephrology Quality, and Patient Safety Task Force

1673
Monitoring Quality of Care at Dialysis Facilities: A Case for Regulatory Parsimony—and Beyond

John C. Stivelman

Moving Points in Nephrology

1691
Onco-Nephrology: What the Nephrologist Needs to Know about Cancer and the Kidney

Jeffrey S. Berns and Mitchell H. Rosner

1692
Onco-Nephrology: AKI in the Cancer Patient

Albert Q. Lam and Benjamin D. Humphreys
On the Cover

What’s the diagnosis? Renal biopsy reveals many tubules which appear to be obstructed by abundant clear needle-shaped crystals, some of which have dissolved with tissue processing. The crystals are surrounded by intra-tubular macrophages and multinucleated giant cells. There is evidence of acute tubular injury, interstitial chronic inflammation, and tubulointerstitial scarring. The patient presented with sterile pyuria and acute kidney injury; the biopsy is diagnostic of a “crystal nephropathy.” In this case, the etiology of crystal nephropathy is the protease inhibitor, indinavir. Crystal deposition within tubular lumina of the kidney can cause both acute and chronic kidney injury. While a number of endogenous processes are associated with crystal-induced kidney injury (tumor lysis syndrome with acute uric acid nephropathy, gastric bypass with acute oxalate nephropathy), several medications can cause this clinical renal syndrome. Common examples include agents such as acyclovir, sulfadiazine, ciprofloxacin, methotrexate, indinavir, atazanavir, sodium phosphate bowel purgatives, ascorbic acid, ethylene glycol, and triamterene. With these agents, either the drug or its metabolites crystallize within the renal tubules, often due to one or more factors such as inherent drug insolubility, urine pH (high or low), sluggish urine flow rates (increased urinary drug concentration), and underlying kidney disease. For example, ciprofloxacin, indinavir and atazanavir can precipitate in tubular lumens in alkaline urine. In contrast, drugs such as sulfadiazine and methotrexate (and their metabolites) are less soluble in acid urine and more likely to precipitate in the kidney at pH < 6.0. Drugs such as orlistat can induce malabsorption with enteric hyperoxaluria and acute oxalate nephropathy. Clinically, patients may develop asymptomatic crystalluria, crystal-induced AKI, or nephrolithiasis. Prevention and therapy are directed at improving urinary flow rates, stopping or dose reducing the culprit drug, and altering urine pH (when feasible) to enhance drug/metabolite solubility. Most patients recover kidney function with drug discontinuation; however, some patients develop chronic kidney disease. (Image and text provided by Mark A. Perazella, Yale University School of Medicine; and Glen S. Markowitz, Columbia University College of Physicians and Surgeons)