Editorials

2329 The Role of Catalytic Iron in Acute Kidney Injury
Sudhir V. Shah, Mohan M. Rajapurkar, and Radhakrishna Baliga
See related article on page 2340.

2332 Is It Time to Evolve Past the Prerenal Azotemia versus Acute Tubular Necrosis Classification?
Justin M. Belcher and Chirag R. Parikh
See related editorial on page 2329.

2335 Validating the Oxford Classification of IgA Nephropathy
Stéphan Troyanov and Fernando C. Fervenza
See related article on page 2384.

2337 Disaster Preparedness for Dialysis Patients
Myra A. Kleinpeter
See related article on page 2478.

Original Articles

Acute Kidney Injury/Acute Renal Failure

2340 Urinary Hepcidin-25 and Risk of Acute Kidney Injury Following Cardiopulmonary Bypass
Julie Ho, Martina Reslerova, Brent Gali, Ang Gao, Jennifer Bestland, David N. Rush, Peter W. Nickerson, and Claudio Rigatto
See related editorial on page 2329.

2347 Urinary Calprotectin and the Distinction between Prerenal and Intrinsic Acute Kidney Injury
Frank Heller, Sandra Frischmann, Maria Grünbaum, Walter Zidek, and Timm H. Westhoff
See related editorial on page 2332.

Chronic Kidney Disease

2356 Skin Autofluorescence and the Association with Renal and Cardiovascular Risk Factors in Chronic Kidney Disease Stage 3
Natasha J. McIntyre, Richard J. Fluck, Christopher W. McIntyre, and Maarten W. Taal

2364 Metabolic Syndrome and Kidney Disease: A Systematic Review and Meta-analysis

2374 Symmetric Dimethylarginine as a Proinflammatory Agent in Chronic Kidney Disease
Eva Schepers, Daniela V. Barreto, Sophie Liabeuf, Griet Glorieux, Sunny Eloot, Fellype C. Barreto, Ziad Massy, and Raymond Vanholder
2384 The Use of the Oxford Classification of IgA Nephropathy to Predict Renal Survival
Eric Alamartine, Catherine Sauron, Blandine Laurent, Aurore Sury, Aline Seffert, and Christophe Mariat
See related editorial on page 2335.

2389 The Impact of Antihypertensive Drug Therapy on Endotoxemia in Elderly Patients with Chronic Kidney Disease
Stephen G. John, Paul J. Owen, Laura E. A. Harrison, Cheuk-Chun Szeto, Ka-Bik Lai, Philip K. T. Li, and Christopher W. McIntyre

2395 Serum Bicarbonate and Mortality in Stage 3 and Stage 4 Chronic Kidney Disease

Clinical Nephrology

2403 Hemodynamic Correlates of Proteinuria in Chronic Kidney Disease

2411 Assessing Glomerular Filtration Rate in Hospitalized Patients: A Comparison Between CKD-EPI and Four Cystatin C-Based Equations
Alfonso Segarra, Judith de la Torre, Natalia Ramos, Augusto Quiroz, Maria Garjau, Irina Torres, M. Antonia Azancot, Montserrat López, and Ana Sobrado

2421 Prognosis of CKD Patients Receiving Outpatient Nephrology Care in Italy
Luca De Nicola, Paolo Chioldi, Carmine Zoccali, Silvio Borrelli, Bruno Cianciaruso, Biagio Di Iorio, Domenico Santoro, Vincenzo Giancaspro, Cataldo Abaterusso, Ciro Gallo, Giuseppe Conte, and Roberto Minutolo, for the SIN-TABLE CKD Study Group

2429 Phenotype and Outcome in Hereditary Tubulointerstitial Nephritis Secondary to UMOD Mutations
Guillaume Bollée, Karin Dahan, Martin Flamant, Vincent Morinière, Audrey Pawtowski, Laurence Heidet, Didier Lacombe, Olivier Devuyst, Yves Pirson, Corinne Antignac, and Bertrand Knebelmann

2439 Glomerular Hyperfiltration and Renal Progression in Children with Autosomal Dominant Polycystic Kidney Disease
Imed Helal, Berenice Reed, Kim McFann, Xiang-Dong Yan, Godela M. Fick-Brosnahan, Melissa Cadnapaphornchai, and Robert W. Schrier

Diabetes and the Kidney

2444 Albuminuria and Estimated Glomerular Filtration Rate as Predictors of Diabetic End-Stage Renal Disease and Death
Abeba M. Berhane, E. Jennifer Weil, William C. Knowler, Robert G. Nelson, and Robert L. Hanson

Epidemiology and Outcomes

2452 C-Reactive Protein and Prediction of 1-Year Mortality in Prevalent Hemodialysis Patients
Jonathan Bazeley, Brian Bieber, Yun Li, Hal Morgenstern, Patricia de Sequera, Christian Combe, Hiroyasu Yamamoto, Martin Gallagher, Friedrich K. Port, and Bruce M. Robinson

2462 Cigarette Smoking and the Association with Glomerular Hyperfiltration and Proteinuria in Healthy Middle-Aged Men
Isseki Maeda, Tomoshige Hayashi, Kyoko Kagawa Sato, Hideo Koh, Nobuko Harita, Yoshiko Nakamura, Ginji Endo, Hiroshi Kambe, and Kanji Fukuda
2470 Uric Acid Levels and All-Cause and Cardiovascular Mortality in the Hemodialysis Population

ESRD and Chronic Dialysis
2478 Personal Disaster Preparedness of Dialysis Patients in North Carolina
Mark Foster, Jane H. Brice, Frances Shofer, Stephanie Principe, Darren DeWalt, Ronald Falk, and Maria Ferris
See related editorial on page 2337.

2485 Improvement in the Renal Prognosis in Nephropathic Cystinosis

2492 The Effect of Racial Origin on Total Body Water Volume in Peritoneal Dialysis Patients
Andrew Davenport, Rabya Hussain Sayed, and Stanley Fan

Genetics
2499 Tolvaptan in Autosomal Dominant Polycystic Kidney Disease: Three Years’ Experience
Eiji Higashihara, Vicente E. Torres, Arlene B. Chapman, Jared J. Grantham, Kyongtae Bae, Terry J. Watnick, Shigeo Horie, Kikuo Nutahara, John Ouyang, Holly B. Krasa, and Frank S. Czerwiec, for the TEMPO₂ and 156-05-002 Study Investigators

Hypertension
2508 Cardiac Magnetic Resonance Assessment of Left Ventricular Mass in Autosomal Dominant Polycystic Kidney Disease

Attending Rounds
2516 Attending Rounds: Patient with Hypokalemia and Metabolic Acidosis
Asghar Rastegar

Commentary
2522 Hemodialysis Treatment Time: A Fresh Perspective
Eduardo Lacson Jr. and Steven M. Brunelli

Public Policy Series
2531 Kidney-related Diseases and Quality Improvement: AHRQ’s Role
Carolyn M. Clancy
On the Cover
What’s the Diagnosis? This image is from a four chamber view of a 12 year old boy undergoing peritoneal dialysis. The left ventricle (LV) is dilated (end diastolic diameter 55 mm) and the interventricular septum and left ventricular posterior wall are hypertrophic. Left ventricular hypertrophy (LVH) is both an independent risk factor and an intermediate endpoint of cardiovascular morbidity in patients with chronic kidney disease. However, its definition is a challenge in children due to the substantial differences of LV mass distribution when using different pediatric reference charts, which results in a marked discrepancy in estimated LVH prevalence. The International Pediatric Peritoneal Dialysis Network database provides a unique opportunity to re-assess and compare the effect of different indexation methods on the calculated prevalence of LVH. Using height-adjusted LVMI reference data, LVH is highly prevalent but less common (48%) than previously diagnosed (65%) in children on PD. Hypertension, fluid overload and hyperparathyroidism appear as the most important determinants of LVH in dialyzed children. Notably, all these factors are potentially modifiable by therapeutic efforts. (Image provided by Sevcan A. Bakkaloglu, Dagmara Borzych, Gulendam Kocak, Bradley A. Warady and Franz Schaefer).