Patient Voice

934 Changing Health Disparities in Autosomal Dominant Polycystic Kidney Disease (ADPKD)
Suzanne F. Ruff
See related article on page 976.

Editorials

936 Addressing “Second Hits” in the Pursuit of Greater Equity in Health Outcomes for Individuals with ADPKD
Dinushika Mohottige, Lisa M. McElroy, and L. Ebony Boulware
See related article on page 976.

939 Urine or You’re Out? Perspectives on Urinary Output Thresholds in the Neonatal Acute Kidney Injury Definition
Matthew W. Harer and Jennifer R. Charlton
See related article on page 949.

942 Mitochondrial DNA and Kidney Function
Florian Kronenberg and Kai-Uwe Eckardt
See related article on page 966.

945 Prognostication for C3 Glomerulopathy and Idiopathic Immunoglobulin-Associated Membranoproliferative Glomerulonephritis
Fernando Caravaca-Fontán and Manuel Praga
See related article on page 994.

Original Articles

Acute Kidney Injury and ICU Nephrology
949 Urine Output Monitoring for the Diagnosis of Early-Onset Acute Kidney Injury in Very Preterm Infants
Aurélie De Mul, Paolina Parvex, Alice Hénneau, Valérie Biran, Antoine Poncet, Olivier Baud, Marie Saint-Faust, and Alexandra Wilhelm-Bals
See related editorial on page 939.

Chronic Kidney Disease
957 Treatment Decision Making for Older Kidney Patients during COVID-19

966 Association of Mitochondrial DNA Copy Number with Risk of Progression of Kidney Disease
William J. He, Changwei Li, Zhijie Huang, Sijy Geng, Varun S. Rao, Tanika N. Kelly, L. Lee Hamm, Morgan E. Crams, Dan E. Arking, Lawrence J. Appel, and Casey M. Rebholz, on behalf of the CRIC Study Investigators
See related editorial on page 942.

Cystic Kidney Disease
976 Health Disparities in Autosomal Dominant Polycystic Kidney Disease (ADPKD) in the United States
Rita L. McGill, Milda R. Saunders, Alexandra L. Hayward, and Arlene B. Chapman
See related Patient Voice and editorial on pages 934 and 936, respectively.
Glomerular and Tubulointerstitial Diseases

986 Glomerular Exostosin as a Subtype and Activity Marker of Class 5 Lupus Nephritis
Chengyu Wang, Yang Liu, Mingchao Zhang, Fan Yang, Feng Xu, Shaolin Shi, Caihong Zeng, Xin Chen, Yiqi Miao, Zhengzhao Liu, and Weixin Hu

994 Association of Histologic Parameters with Outcome in C3 Glomerulopathy and Idiopathic Immunoglobulin-Associated Membranoproliferative Glomerulonephritis
See related editorial on page 945.

Maintenance Dialysis

1008 Immune Responses after a Third Dose of mRNA Vaccine Differ in Virus-Naive versus SARS-CoV-2–Recovered Dialysis Patients
Philippe Attias, Imane Azzaoui, Khalil El Karoui, Andrée de La Selle, Aurélien Sokal, Pascal Chappert, Philippe Grimbert, Ignacio Fernandez, Magali Bouvier, Chloé Samson, Djamal Dahmane, Philippe Rieu, Patrice Nizard, Slim Fourati, Hamza Sakhi, and Matthieu Mahévas, on behalf of the Mondor NephroCov Study Group

1017 Automated Determination of Left Ventricular Function Using Electrocardiogram Data in Patients on Maintenance Hemodialysis

Transplantation

1026 Machine Learning–Derived Integer-Based Score and Prediction of Tertiary Hyperparathyroidism among Kidney Transplant Recipients: An Integer-Based Score to Predict Tertiary Hyperparathyroidism
Namki Hong, Juhan Lee, Hyung Woo Kim, Jong Ju Jeong, Kyu Ha Huh, and Yumie Rhee

Research Letter

1036 SARS-CoV-2 Booster Vaccine Response among Patients Receiving Dialysis
Pablo García, Jialin Han, Maria E. Montez-Rath, Sumi Sun, Tiffany Shang, Julie Parsonnet, Glenn M. Chertow, Shuchi Anand, Brigitte Schiller, and Graham Abra

Critical Care Nephrology and Acute Kidney Injury

1039 Low-Flow Acute Kidney Injury: The Pathophysiology of Prerenal Azotemia, Abdominal Compartment Syndrome, and Obstructive Uropathy
Bruce A. Molitoris

1050 The Pathophysiology of Sepsis-Associated AKI
Shuhei Kawabara, Eibhlin Goggins, and Mark D. Okusa

Kidney Case Conference: Nephrology Quiz and Questionnaire

1070 Disentangling a Case of Glomerulonephritis with Fibrils
Pietro Canetta

Perspectives

1073 Engaging Trainees by Enriching Nephrology Elective Experiences
Jeffrey H. William, Taimur Dad, Rachel E. Hilburg, Koyal Jain, and S. Ali Husain

1076 Chlorthalidone and Advanced Chronic Kidney Disease
Seth B. Furgeson and Stuart Linas
Lifesaving Care for Patients with Kidney Failure during the War in Ukraine 2022

Natalia Stepanova, Mykola Kolesnyk, Zain Mithani, Baneen Alkofair, Rebecca Lauren Shakour, Anna Petrova, Volodymyr Novakivskyy, Jeffrey L. Hymes, Szymon Brzosko, Jeff Giullian, Zelde Espinel, and James M. Shultz

Features

1082 Keys to Driving Implementation of the New Kidney Care Models

1092 Moving from Evidence to Implementation of Breakthrough Therapies for Diabetic Kidney Disease

Katherine R. Tuttle, Leslie Wong, Wendy St. Peter, Glenda Roberts, Janani Rangaswami, Amy Mottl, Alan S. Kliger, Raymond C. Harris, Patrick O. Gee, Kevin Fowler, David Cherney, Frank C. Brosius III, Christos Argyropoulos, and Susan E. Quaggin, on behalf of the Diabetic Kidney Disease Collaborative Task Force

On the Cover

What is the diagnosis?

A 40-year-old female without a history of diabetes presented with pallor, fatigue, vomiting, loss of appetite, and oliguria for the past 10 days. She denied any similar history in the past, and there were no systemic symptoms such as arthralgia, rash, hair loss, or sore throat. There was no history of spontaneous abortion. Blood pressure readings were within normal limits. Routine urine examination showed a bright red color, trace protein, and 2–3 RBCs/hpf. Serum creatinine was 8.3 mg/dL. Complete blood count revealed a hemoglobin of 8.4 gm/dL and total leucocyte count of 3800 cells/mm3, platelets 140 × 10^3/microL. Viral markers for hepatitis B and C, human immunodeficiency virus, as well as autoimmune serologies (such as antinuclear antibody and antinuclear cytoplasmic antibody) were negative.

Image Description:

Kidney biopsy was for diagnosis of AKI. Biopsy comprised 18 glomeruli and four arteries. Predominant findings were: tubules containing brownish coarse pigment alongside denudation of brush border indicative of AKI. These pigments were positively stained with Prussian blue stain for iron. Iron pigment was dominantly seen in proximal tubules over distal tubules. The interstitial space revealed subtle evidence of edema, however lacked inflammatory cells and fibrosis. The glomerular and arterial compartments were unremarkable. Direct immunofluorescence was negative with a panel of antisera (IgG, IgA, IgM, C3, C1q, Kappa & Lambda). These findings suggested intravascular hemolysis and led to a subsequent workup for red blood cell membrane defects. Coomb’s test and sickle test were negative. Testing for Malaria parasite was negative by card test. Flow cytometric evaluation revealed CD14-negative leucocytes and CD55-negative/CD59-negative population on red blood cells in 70% of the population. Thus, testing confirmed paroxysmal nocturnal hemoglobinuria-induced secondary hemosiderosis causing acute tubular injury. Bone marrow examination showed normal representation of all hematopoietic elements with normal iron stores.

Teaching Points:

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal disorder due to an intrinsic membrane defect. Stem cell mutation results in either partial or complete absence of cell membrane protein, glycosyl phosphatidylinositol (GPI)-anchored proteins. In view of the mutation found in PNH, there is reduced or absent expression of GPI-linked complement regulator molecules on all cells derived by bone marrow (such as CD55, CD59, and CD14). As a result, there is uncontrolled complement-mediated hemolysis and thrombosis. Kidney disease in PNH is mainly related to intravascular hemolysis, which may be due to direct tubular toxicity of heme released from hemoglobin. Kidney biopsy demonstrating brownish pigment in the proximal tubules, which stain for iron, should lead to a diagnostic workup for PNH. Supportive hemodialysis is recommended for managing kidney injury, along with iron supplements and steroids. The mainstay of therapy for PNH includes blockage of alternative complement pathways with drugs such as eculizumab, ravulizumab, and allogeneic hematopoietic stem cell transplantation. Outcome of kidney injury is based on the containment of ongoing hemolysis. Our patient was managed conservatively with temporary hemodialysis for 8 weeks. Serum creatinine had stabilized to 1.3 mg/dL at the end of 8 weeks.

(Images and text provided by Mahesha Vankalakunti, Manipal Hospital, Bengaluru, India; Manjunath Doshetty, Chirayu Hospital, Kalaburagi, India; and Venkatesh Moger, Karnataka Institute of Medical Sciences, Hubli, India)