Editorials

2099 With Gratitude to the CJASN Community
Gary Curhan

2101 Vancomycin and the Risk of AKI: Now Clearer than Mississippi Mud
Thomas D. Nolin
See related article on page 2132.

2104 Second-Line Agents for the Treatment of Type 2 Diabetes and Prevention of CKD
Margaret K. Yu and Sun H. Kim
See related article on page 2177.

2107 Working Toward More Effective Advance Care Planning in Patients with ESRD
Sara Ann Combs
See related article on page 2204.

2110 Progression of Interstitial Fibrosis in Kidney Transplantation
Rainer Oberbauer
See related article on page 2225.

Original Articles

Acute Kidney Injury

2113 Sex and the Risk of AKI Following Cardio-thoracic Surgery: A Meta-Analysis
Joel Neugarten, Sandipani Sandilya, Beenu Singh, and Ladan Golestaneh

2123 Acute Kidney Injury in the Era of the AKI E-Alert
Jennifer Holmes, Timothy Rainer, John Geen, Gethin Roberts, Kate May, Nick Wilson, John D. Williams, and Aled O. Phillips, on behalf of the Welsh AKI Steering Group

2132 Vancomycin and the Risk of AKI: A Systematic Review and Meta-Analysis
Abhisekh Sinha Ray, Ammar Haikal, Kassem A. Hammoud, and Alan S.L. Yu
See related editorial on page 2101.

Chronic Kidney Disease

2141 The Associations of Blood Kidney Injury Molecule-1 and Neutrophil Gelatinase–Associated Lipocalin with Progression from CKD to ESRD
Helen V. Alderson, James P. Ritchie, Sabrina Pagano, Rachel J. Middleton, Menno Pruijm, Nicolas Vuilleumier, and Philip A. Kalra

2150 A Concept–Wide Association Study of Clinical Notes to Discover New Predictors of Kidney Failure
Karandeep Singh, Rebecca A. Betensky, Adam Wright, Gary C. Curhan, David W. Bates, and Sushrut S. Waikar

Clinical Immunology and Pathology

2159 Prognostic Value of Histologic Classification of ANCA-Associated Glomerulonephritis
Rune Bjørneklett, Sanjeevan Sriskandarajah, and Leif Bostad
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Immunology and Pathology (Continued)</td>
<td>2168</td>
<td>Glomerular Pathology in Dent Disease and Its Association with Kidney Function</td>
<td>Xiangling Wang, Franca Anglani, Lada Beara-Lasic, Anila J. Mehta, Lisa E. Vaughan, Loren Herrera Hernandez, Andrea Cogal, Steven J. Scheinman, Gema Ariceta, Robert Isom, Lawrence Copelovitch, Felicity T. Enders, Dorella Del Prete, Giuseppe Vezzoli, Fabio Paglialonga, Peter C. Harris, and John C. Lieske, on behalf of the Investigators of the Rare Kidney Stone Consortium</td>
</tr>
<tr>
<td>Diabetes and The kidney</td>
<td>2177</td>
<td>Comparative Effectiveness of Second-Line Agents for the Treatment of Diabetes Type 2 in Preventing Kidney Function Decline</td>
<td>Adriana M. Hung, Christianne L. Roumie, Robert A. Greevy, Carlos G. Grijalva, Xulei Liu, Harvey J. Murff, T. Alp Ikizler, and Marie R. Griffin</td>
</tr>
<tr>
<td>Epidemiology and Outcomes</td>
<td>2186</td>
<td>Association of Increasing GFR with Change in Albuminuria in the General Population</td>
<td>Toralf Melsom, Vidar Stefansson, Jørgen Schei, Marit Solbu, Trond Jenssen, Tom Wilsaard, and Bjørn O. Eriksen</td>
</tr>
<tr>
<td>ESRD and Chronic Dialysis</td>
<td>2195</td>
<td>Conservative Management and End-of-Life Care in an Australian Cohort with ESRD</td>
<td>Rachael L. Morton, Angela C. Webster, Kevin McGeechan, Kirsten Howard, Fliss E.M. Murtagh, Nicholas A. Gray, Peter G. Kerr, Michael J. Germain, and Paul Snelling</td>
</tr>
<tr>
<td></td>
<td>2225</td>
<td>Progression of Interstitial Fibrosis during the First Year after Deceased Donor Kidney Transplantation among Patients with and without Delayed Graft Function</td>
<td>Raymond L. Heilman, Maxwell L. Smith, Byron H. Smith, Ibrahim Qaqish, Hasan Khamash, Andrew L. Singer, Bruce Kaplan, and Kunam S. Reddy</td>
</tr>
<tr>
<td>Geriatric Nephrology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal Transplantation</td>
<td>2218</td>
<td>Association of Nondisease-Specific Problems with Mortality, Long-Term Care, and Functional Impairment among Older Adults Who Require Skilled Nursing Care after Dialysis Initiation</td>
<td>C. Barrett Bowling, Laura Plantinga, Rasheeda K. Hall, Anna Mirk, Rebecca Zhang, and Nancy Kutner</td>
</tr>
<tr>
<td></td>
<td>2224</td>
<td>Achieving Procedural Competence during Nephrology Fellowship Training: Current Requirements and Educational Research</td>
<td>Edward Clark, Jeffrey H. Barsuk, Jolanta Karpinski, and Rory McQuillan</td>
</tr>
</tbody>
</table>

Glomerular Diseases: Update for the Clinician

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2234</td>
<td>Glomerular Diseases: Registries and Clinical Trials</td>
<td>Marva M. Moxey-Mims, Michael F. Flessner, Lawrence Holzman, Frederick Kaskel, John R. Sedor, William E. Smoyer, Aliza M. Thompson, and Lynne Yao</td>
</tr>
<tr>
<td>Education Series</td>
<td>2244</td>
<td>Achieving Procedural Competence during Nephrology Fellowship Training: Current Requirements and Educational Research</td>
</tr>
</tbody>
</table>
A 68 year old man presented with relapsed chronic lymphocytic leukemia and presumed pneumocystis pneumonia. He was treated with high dose IV trimethoprim-sulfamethoxazole. Serum creatinine had been 1.0 mg/dl for the first 5 days and then suddenly increased to 2.2 mg/dl on day 6 with associated oliguria. Renal ultrasound showed no abnormality. Urinalysis revealed a pH of 6.0, and the urine sediment showed pleomorphic sulfamethoxazole crystals with no red or white blood cells (top half of image). Sulfamethoxazole in high doses and in concentrated urine usually forms crystals that are needle or dumbbell shaped. However, in this case, urine microscopy showed birefringent crystalluria on polarized microscopy (lower half of image) with rhomboid and rectangular crystals and some which formed rosettes. The crystals are those of N-acetyl sulfamethoxazole, the primary urinary metabolite of sulfamethoxazole. Treatment includes drug discontinuation and IV fluids – urine alkalinization is recommend to improve drug solubility. After drug discontinuation and infusion of normal saline, his oliguria resolved and creatinine returned to baseline in 3 days. (Cover image and text provided by Kavita Wei, MD and Derek Michael Fine, MD, Johns Hopkins University, Baltimore, MD)