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Biomarker Enhanced Risk Prediction for Adverse
Outcomes in Critically Ill Patients Receiving RRT
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Kevin Finkel,** Xiaoyan Wen,*† and John A. Kellum*† for the Biological Markers for Recovery of Kidney (BioMaRK)
Study Investigators

Abstract
Background and objectivesHigher plasma concentrations of inflammatory and apoptosis markers in critically ill
patients receiving RRT are associated with RRT dependence and death. This study objective was to examine
whether plasma inflammatory (IL-6, -8, -10, and -18; macrophage migration inhibitory factor) and apoptosis
(death receptor-5, tumor necrosis factor receptor I and II) biomarkers augment risk prediction of renal recovery
and mortality compared with clinical models.

Design, setting, participants, & measurements The Biologic Markers of Recovery for the Kidney study (n=817)
was a prospective, nested, observational cohort study conducted as an ancillary to the Veterans Affairs/
National Institutes of Health Acute renal failure Trial Network study, a randomized trial of intensive versus
less intensive RRT in critically ill patients with AKI conducted between November 2003 and July 2007 at 27
Veterans Affairs– and university-affiliated centers. Primary outcomes of interest were renal recovery and
mortality at day 60.

Results A parsimonious clinical model consisting of only four variables (age, mean arterial pressure, mechanical
ventilation, and bilirubin) predicted renal recovery (area under the receiver-operating characteristic curve [AUROC], 0.73;
95% confidence interval [95%CI], 0.68 to 0.78) andmortality (AUROC, 0.74; 95%CI, 0.69 to 0.78). By contrast, individual
biomarkers were only modestly predictive of renal recovery (AUROC range, 0.55–0.63) and mortality (AUROC range,
0.54–0.68).Addingplasma IL-8 to aparsimoniousmodel augmentedpredictionof recovery (AUROC, 0.76; 95%CI, 0.71 to
0.81; P=0.04) and mortality (AUROC, 0.78; 95% CI, 0.73 to 0.82; P,0.01) compared with the clinical model alone.

Conclusions This study suggests that a simple four-variable clinical model with plasma IL-8 had predictive value
for renal recovery andmortality. These findings require external validation but could easily be used by clinicians.

Clin J Am Soc Nephrol 10: 1332–1339, 2015. doi: 10.2215/CJN.09911014

Introduction
Severely ill patients with AKI requiring RRT are at a
higher risk of dialysis dependence and death. More
than half of patients receiving RRT die, and only a
third are alive and independent of RRT by 2 months
after acute illness (1). Despite decades of research, no
specific treatment has improved outcomes from se-
vere AKI. One important reason might be the hetero-
geneous nature of patients with severe AKI (2). While
some patients with severe AKI may recover without
interventions, other patients require specific interven-
tions to improve outcomes.

Early risk stratification has important therapeutic
implications, such as to determine the prognosis,
ascertain the timing of initiation of interventions,
and enroll a homogenous group of patients in clinical
trials of AKI. Thus, it is important to distinguish
patients at risk for death and nonrecovery of kidney
function from those who are likely to recover early on.
Emerging biomarkers of AKI alone or in combination
with clinical variables could aid in risk stratification.

We previously found that higher circulating con-
centrations of plasma inflammatory (IL-6, -8, -10, and
-18 and macrophage migration inhibitory factor) and
apoptosis (tumor necrosis factor receptor (TNFR) I
and II and death receptor-5) biomarkers were strongly
associated with RRT dependence and death using the
Biologic Markers of Recovery for the Kidney
(BioMaRK) study cohort (1). BioMaRK was as an
ancillary study to the Veterans Affairs (VA)/National
Institutes of Health (NIH) Acute renal failure Trial
Network (ATN) study (3).
Prior work using the ATN cohort also found that a

model consisting of 21 clinical variables predicted 60-day
mortality and outperformed existing severity of illness
scoring systems (4). However, it is not clear whether a
more parsimonious clinical model, which can be easily
used by clinicians at the bedside, with or without bio-
markers, can be used to predict outcomes. In this study,
we examined the predictive value of various clinical
models along with plasma biomarkers for mortality
and renal recovery using the BioMaRK cohort.
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Materials and Methods
Study Design and Selection of Participants
The BioMaRK study (n=817) was a multicenter, prospec-

tive, nested, observational cohort study conducted as an
ancillary to the VA/NIH ATN clinical trial. The ATN
study was a multicenter randomized clinical trial
(n=1124) comparing intensive and less intensive RRT strate-
gies in critically ill patients that was conducted between
November 2003 and July 2007 and is described in detail
elsewhere (3). The BioMaRK study included all partici-
pants in the ATN study who gave additional written con-
sent to blood collections for sample banking (1). The
institutional review boards of the University of Pittsburgh
and all other participating sites approved the study.

Biomarker Sample and Data Collection and Follow-up
Blood samples were collected after study randomization

in the ATN trial (day 1) in 817 participants. Details of the
biomarker assays, detection threshold, and censoring are
provided in detail elsewhere (1) and in the Supplemental
Material (Item 1). We prospectively ascertained baseline
characteristics, including demographic variables; cause of
AKI; and other clinical, physiologic, and laboratory data at
the time of entry into the ATN study. We collected individ-
ual comorbid illnesses and assessed comorbidity using the
Charlson comorbidity score (5). Severity of illness was ascer-
tained at enrollment using the Acute Physiology and
Chronic Health Evaluation (APACHE) II (6), and the Cleve-
land Clinic Intensive Care Unit Acute Renal Failure score (7).
All participants were followed daily until hospital discharge,
death, or day 28 after randomization, whichever occurred
first. Our primary outcomes of interest were renal recovery
and mortality at day 60. Outcomes were ascertained daily
during hospitalization and at days 28 and 60 using tele-
phone and/or mail follow-up. Renal recovery was defined
as being alive and independent from RRT by day 60, irre-
spective of the participant’s discharge location.

Statistical Analyses
We imputed missing categorical comorbidities using a

regression-based algorithm as implemented in the ATN study,
including the Sequential Organ Failure Assessment score
(n=201), APACHE II score (n=44), and Cleveland Clinic In-
tensive Care Unit Renal Failure score (n=146) (4). For all anal-
yses, plasma biomarker data were log transformed and
analyzed in the natural logarithm scale. Left-censored bio-
marker data were imput by the lowest value and right-
censored data by the highest value in measurement (1).
Arterial pH was standardized using a normally distributed
Z-score with zero mean and unit variance (SD, 60.1).
We first determined whether the distribution of clinical

variables was similar between the BioMaRK and ATN
cohorts using chi-square tests to compare categorical
variables and t tests for continuous variables. We then
examined whether the ATN model had good discrimina-
tion and calibration in the BioMaRK dataset. The ATN
clinical model was a 21-variable model used to predict
60-day mortality. We then performed a random 2-fold
split of the BioMaRK data to create separate derivation
(model building) and validation data sets. The derivation
and validation datasets were constructed using a random
Bernoulli so that each record chosen had 50% probability
of being in either dataset.
We derived four different clinical models from the Bio-

MaRK derivation cohort: (1) reduced ATN model, (2) least
absolute shrinkage and selection operator (LASSO) selected
model, (3) stepwise selected model, and (4) parsimonious
model restricted to variables routinely available clinically.
The reduced ATN model included just those variables
from the ATN model that retained significance in multiple
logistic regression in the BioMaRK derivation dataset. The
LASSO method is a penalized regression-based variable se-
lection method that tends to be more stable and less com-
putationally demanding than other selection methods as the
number of variables increases (8). In the stepwise model,

Table 2. Predictive ability of baseline clinical models for renal recovery and mortality

Outcome and Clinical Modela AUROC (95% CI) Difference in AUROC’s (95% CI) P Value

Recovery
ATN 0.77 (0.72 to 0.81) Reference model
Reduced ATNb 0.74 (0.69 to 0.79) 20.02 (20.05 to -0.001) 0.05
LASSO modelc 0.76 (0.71 to 0.81) 20.01 (20.03 to 0.02) 0.60
Stepwise modelc 0.75 (0.70 to 0.80) 20.02 (20.05 to 0.01) 0.16
Parsimonious modeld 0.73 (0.68 to 0.78) 20.03 (20.06 to 20.01) 0.02

Mortality
ATN 0.80 (0.76 to 0.85) Reference model —
Reduced ATNb 0.75 (0.71 to 0.80) 20.03 (20.05 to 20.01) ,0.01
Lasso modelc 0.78 (0.74 to 0.83) 20.02 (20.05 to 0.001) 0.07
Stepwise modelc 0.77 (0.73 to 0.82) 20.03 (20.05 to 20.01) ,0.01
Parsimonious modeld 0.74 (0.69 to 0.78) 20.06 (20.10 to 20.03) ,0.001

ATN, Acute renal failure Trial Network; LASSO, least absolute shrinkage and selection operator; AUROC, area under the receiver-
operating characteristic curve; 95% CI, 95% confidence interval.
aAll models were built using the validation cohort consisting of 423 participants and had a Hosmer–Lemeshow P value .0.05 in-
dicating model calibration. Variables included in various clinical models are shown in Supplemental Table 1.
bVariables that remained significant at P,0.05 in a multivariable model in the Biologic Markers of Recovery for the Kidney cohort.
cVariables deemed to be significant in a stepwise or penalized least absolute shrinkage and selection operator–based selection model.
dFour-variable parsimonious clinical model.
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variables were entered using an entry criteria of P,0.1 and
were retained if P,0.05. Finally, we derived, using a chi-
square scoring variable selection method, a parsimonious
model in which variables were restricted to readily available
clinical data at the bedside.
The area under the receiver-operating characteristic curve

(AUROC) for each of the models in the validation set were
compared using the Delong method (9), their respective net
reclassification index (NRI), integrated discrimination im-
provement (IDI), category-free net reclassification index
(CFNRI), and calibration performance using the Hosmer–
Lemeshow (HL) goodness-of-fit test (10).
We examined univariate predictive ability of selected

biomarkers to determine whether any single biomarker
outperformed the clinical model and determined the
optimal cutoff for each biomarker using the Youden index
(11) (sensitivity+specificity21) as an optimization crite-
rion using the validation cohort. The cutoff value was
found by finding the fitted probability corresponding to
the optimal Youden index; this probability, along with the
fitted model intercept and slope, was then used to back-
solve for the optimal cutoff (Equation 1 in Supplemental
Material).
We added biomarkers to the clinical model to determine

the added predictive ability. Before adding biomarkers we
determined multicollinearity by computing variance in-
flation factors (12). We considered variance inflation fac-
tors ,5 to indicate no serious multicollinearity. The
relative performance of the biomarkers, over the clinical
set, was determined via AUROC, NRI, IDI, and CFNRI,
and calibration was applied to the validation set. Statisti-
cal analyses were performed using SAS software, version
9.3 (SAS Institute, Cary, NC), with significance set at
P,0.05.

Results
Baseline Characteristics of BioMaRK and ATN Study
Cohorts
Of the 817 participants who formed the BioMaRK cohort,

298 (36.5%) were alive and free of RRT and 415 (50.8%) died
by day 60. The baseline characteristics of BioMaRK and
ATN cohorts were similar (Supplemental Table 1). The
derivation (model building) and validation cohorts had
394 and 423 participants, respectively.

Prediction of Renal Recovery and Mortality by Clinical
Variables
Table 1 shows the clinical variables included in different

models. In the validation cohort, the ATN clinical model, re-
duced ATN model, LASSO model, stepwise-selected model,
and parsimonious model had similar predictive capacity for
renal recovery (AUROC range, 0.74–0.77) (Table 2) and had
good calibration (HL P value range, 0.08–0.45). However, the
eight-variable LASSO model, compared with the stepwise
model, had a modest incremental discriminative value (IDI,
2% [95% confidence interval (95% CI), 1% to 4%]; CFNRI, 27%
[95% CI, 8% to 47%]). A more parsimonious clinical model
consisting of age, mean arterial pressure, mechanical ventila-
tion, and bilirubin predicted recovery (AUROC, 0.73 [95% CI,
0.68 to 0.78]) and was equivalent to all four clinical models
except the 21-variable ATN clinical model (Table 2).
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Compared with renal recovery, all clinical models had
slightly better predictive value for mortality (AUROC
range, 0.75–0.80) (Table 2). Compared with the ATN clin-
ical model, the reduced ATN model (AUROC, ATN ver-
sus reduced ATN, 0.80 versus 0.75; P,0.01), the stepwise
model (AUROC, ATN versus stepwise, 0.80 versus 0.77;
P,0.01), and the parsimonious model (AUROC, ATN
versus parsimonious, 0.80 versus 0.74; P,0.001) had
lower discrimination. Although the LASSO model and the
stepwise model had good calibration (HL P value=0.08
and 0.09), compared with stepwise model the LASSO
model exhibited only a modest improvement in re-
classification (IDI, 3% [95% CI, 1% to 4%], P,0.05; CFNRI,
32% [95% CI, 13% to 51%], P,0.05). The parsimonious
four-variable clinical model had the lowest predictive
value for mortality (AUROC, 0.74 [95% CI, 0.69 to 0.78])
compared with all four models (Table 2).

Biomarker Prediction of Renal Recovery and Mortality
Table 3 shows the univariable association and predictive

ability of individual biomarkers in the entire cohort. Optimal
cutoff values for each biomarker was derived from the val-
idation cohort. For all biomarkers, per natural log higher
concentration in biomarker concentration was associated
with lower odds for renal recovery (odds ratio range, 0.54–
0.85) and higher odds of mortality (odds ratio range, 1.33–
1.77) in the entire cohort. The predictive ability of individual
biomarkers was poor for renal recovery (AUROC range,
0.55–0.63) and mortality (AUROC range, 0.55–0.66) (Supple-
mental Figures 1 and 2). The AUROC for all biomarkers for
recovery and mortality were 0.66 and 0.71.

Added Predictive Ability of Biomarkers over Clinical Model
on Outcomes
Through use of the validation cohort, Supplemental Figures 3

and 4 show the added value of all biomarkers (IL-6, -8, -10, and
-18; TNFR receptor [TNFR] I and II, macrophage migration in-
hibitory factor, and death receptor-5) or just those biomarkers
that remained, from either a separate stepwise or LASSO vari-
able selection algorithm to the clinical model. The biomarkers
obtained from these selection algorithms were IL-8, IL-10, and
TNFR I for recovery and IL-6, IL-8, and IL-10 for mortality,
respectively. Predictive ability for recovery for the LASSO clin-
ical model (AUROC, 0.76 [95% CI, 0.71 to 0.81]), the LASSO
clinical model plus all biomarkers (AUROC, 0.78 [95% CI, 0.73
to 0.82]), the LASSO clinical model plus IL-8, IL-10, and TNFR I
(AUROC, 0.78 [95% CI, 0.73 to 0.82]), and the LASSO model
with IL-8 alone (AUROC, 0.77 [95% CI, 0.73 to 0.82]) were sim-
ilar, with only a slight improvement in IDI and CFNRI (Table 4).
Adding all of the biomarkers to the clinical model results

in highest AUROC for mortality (AUROC, 0.82 [95% CI,
0.78 to 0.86]) (Supplemental Figure 4) and an improve-
ment over the clinical model alone (AUROC, 0.78 [95%
CI, 0.74 to 0.83]). The LASSO model with IL-8 alone was
superior (AUROC, 0.80 [95% CI, 0.74 to 0.84]) to a LASSO
model alone and no different from a LASSO model incor-
porating IL-6, IL-8, and IL-10 (AUROC, 0.80 [95% CI, 0.76
to 0.85]).
Adding IL-8 to a more parsimonious four-variable clinical

model increased the prediction of renal recovery (AUROC,
0.76 [95% CI, 0.71 to 0.81]; P=0.04) (Figure 1) and mortality
(AUROC, 0.78 [95% CI, 0.73 to 0.82]; P=0.008) (Figure 2) com-
pared with clinical model alone. Indeed, these models were

Table 4. Added predictive value of biomarkers over the clinical models

Outcome and Clinical Modela AUROC (95% CI)
Integrated

Discrimination
Improvement (95% CI)

Category Free Net
Reclassification
Index (95% CI)

P Valuec

Recovery
LASSO 0.76 (0.71 to 0.81) Reference model 0.45
Add IL-8 0.77 (0.72 to 0.82) 0.013 (0.002 to 0.03)b 0.31 (0.11 to 0.51)b 0.30
Add IL-10 0.77 (0.72 to 0.82) 0.014 (0.001 to 0.03)b 0.18 (20.01 to 0.40) 0.07
Add TNFR I 0.76 (0.72 to 0.82) 0.003 (-0.003 to 0.009) 0.14 (20.06 to 0.33) 0.33
LASSO+IL-8 0.77 (0.72 to 0.82) Reference model 0.30
Add IL-10 0.77 (0.73 to 0.82) 0.01 (20.003 to 0.01) 0.17 (20.03 to 0.36) 0.36
Parsimonious model 0.73 (0.68 to 0.78) Reference model 0.69
Parsimonious model+IL-8 0.76 (0.71 to 0.81) 0.02 (0.01 to 0.04)b 0.27 (0.08 to 0.47)b 0.50

Mortality
LASSO 0.78 (0.74 to 0.83) Reference model 0.08
Add IL-6 0.79 (0.75 to 0.83) 0.01 (20.002 to 0.01) 0.10 (20.09 to 0.29) 0.01
Add IL-8 0.80 (0.76 to 0.84) 0.02 (0.01 to 0.04)b 0.33 (0.14 to 0.52)b 0.09
Add IL-10 0.80 (0.76 to 0.84) 0.02 (0.01 to 0.04)b 0.27 (0.07 to 0.45)b 0.07
LASSO+IL-8 0.80 (0.76 to 0.84) Reference model 0.09
Add IL-10 0.01 (20.001 to 0.02) 0.14 (20.05 to 0.33) 0.02
Parsimonious model 0.74 (0.70 to 0.79) Reference model 0.43
Parsimonious model+IL-8 0.78 (0.73 to 0.82) 0.05 (0.03 to 0.07)b 0.41(0.22 to 0.59)b 0.17

LASSO, least absolute shrinkage and selection operator; TNFR, TNF receptor; AUROC, area under the receiver-operating characteristic
curve; 95% CI, 95% confidence interval.
aAll models were built using the validation cohort consisting of 423 participants.
bP,0.05 implies a statistical improvement for that particular metric by adding biomarkers.
cP,0.05 implies lack of fit when adding biomarkers over and above the reference model.
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not significantly different from the more complex models. In
Table 4 we can see that the addition of IL-8 or IL-10 results in
improvement in IDI, CFNRI, and calibration over the refer-
ence mortality model (P,0.05). We then reset the reference
mortality model to include IL-8 to see whether IL-8 was the
major predictive driver, and we found that adding IL-10 to a
mortality model containing IL-8 does not aid in the predictive
ability of the model. We also performed sensitivity analyses
where we reclassified recovery as any time before or includ-
ing 60 days and found results similar to those already reported:
The addition of all biomarkers, or combinations thereof,

do not add to the predictive ability of the baseline clinical
models (data not shown).

Discussion
In this study, we found that the baseline clinical models

and individual plasma biomarkers were similar with re-
spect to overall predictive ability for renal recovery and
mortality. Adding plasma IL-8 to a more complex eight-
variable LASSO clinical model, including the APACHE II
score, had similar predictive value for renal recovery and
only slightly superior predictive value for mortality com-
pared with a four-variable parsimonious clinical model
with IL-8. The simple four-variable model that included
age, mean arterial pressure, mechanical ventilation, and
bilirubin, along with plasma IL-8, had modest predictive
value (AUROC, 0.76 for renal recovery and 0.78 for
mortality). To our knowledge, this study is the first large
study to examine risk prediction for outcomes after severe
AKI using a panel of biomarkers in a large cohort of
critically ill patients receiving RRT.
Our findings are important for several reasons. First, the

four-variable clinical model along with plasma IL-8 could
be used to estimate patient prognosis and clinical decision-
making by nephrologists and intensivists. For instance, IL-8
marker levels measured on the day when RRT initiation is
being considered by a clinician could be useful to better
inform patients and families about prognosis. Because
patients who are older, are mechanically ventilated, and
have lower mean arterial pressure, high bilirubin, and IL-8
levels, are likely to have worse outcomes, they may not
wish to undergo RRT. Although IL-8 is not yet used in
clinical practice to treat patients with AKI, the assay is easy
to perform, with rapidly available results, and could easily
be developed into a clinical test.
Second, identification of a homogeneous group of pa-

tients using biomarker-guided risk assessment allows for
examination of new interventions or interventions that
have previously failed in clinical trials that included a
heterogeneous population of patients with severe AKI.
Third, while studies have examined various clinical models
and biomarkers in severe AKI, none have evaluated risk
prediction of renal recovery in severely ill patients using
simple clinical models. Finally, early prediction of renal
recovery is likely to be helpful with regard to postdischarge
monitoring of renal function after critical illness and sub-
sequent progression to CKD and ESRD in patients who are
unlikely to have complete renal recovery (13).
In prior work using the ATN dataset, Demirjian et al. (4)

found that the ATN model consisting of 21 clinical varia-
bles was superior (AUROC, 0.85) to existing severity of
illness scoring systems for mortality prediction. While
such complex models can be used to compare health sys-
tem performances, they are very difficult for busy clini-
cians to use at the bedside. In contrast, the combination
of the four-variable clinical model and plasma IL-8, de-
spite its modest predictive value, is similar to a more com-
plex eight-variable LASSO model and can potentially be
used at the bedside to make patient care decisions. We also
found that an eight-variable LASSO model consisting of
age, mechanical ventilation, arterial pH, bilirubin, mean
arterial pressure, platelets, APACHE II score, and oliguria,

Figure 1. | Prediction of renal recovery using a parsimonious four-
variable clinical model and IL-8. ROC, receiver-operating charac-
teristic curve.

Figure 2. | Prediction of mortality using a parsimonious four-variable
clinical model and IL-8. ROC, receiver-operating characteristic curve.
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along with IL-8, predicted mortality. However, variables
such as arterial pH require an arterial blood sample, and
APACHE II requires a complex calculation using many sub-
variables, which makes it difficult for routine clinical use.
The predictive value of individual markers was only

modest and lower in comparison with the clinical models
for renal recovery and mortality. Biomarkers remaining
after two different selection methods (stepwise and
LASSO) were similar (IL-6, IL-8, and IL-10 for mortality
and IL-8, IL-10, and TNFR I for recovery) but not identical
to those most strongly associated with poor outcomes in
our prior work (1). Of note, lack of augmented predictive
ability of biomarkers does not imply that these markers
are not associated with poor outcomes. IL-8 is a chemokine
implicated in the pathogenesis of AKI and higher plasma
IL-8 concentrations may reflect a persistent proinflamma-
tory state and multisystem organ failure predicting higher
mortality.
Our study has several important limitations. First, we

selected candidate biomarkers on the basis of biologic
plausibility within inflammation and apoptosis. We did
not include more recent novel urinary biomarkers, such as
neutrophil gelatinase-associated lipocalin (14), kidney in-
jury molecule-1 (15), or cell-cycle arrest markers (16,17)
because the ATN trial did not collect urine samples (3).
In a small subset of the BioMaRK study cohort, we pre-
viously examined a panel of urinary markers and found
that day 1 results were of similar predictive value
(AUROC, 0.51–0.66) to the markers examined in this study
(15). However, by day 14, results were significantly more
predictive, especially when added to the clinical model.
Second, we did not examine local (i.e., renal tissue or

urinary) concentrations of these markers, which could
have improved risk prediction compared with plasma con-
centrations. Third, because we used an imputation algo-
rithm for missing data, it is possible that some of the
associations and their respective magnitudes may depend
on the imputation model used (Supplemental Table 2).
Fourth, risk prediction models always demonstrate best
calibration in the population in which they are generated;
thus, further validation of the model in other cohorts of
patients with AKI will be required before it can be widely
applied to clinical practice.
Our study also has several strengths. Compared with the

ATN mortality prediction model, we used separate model
building and validation data folds as opposed to building
and validating the model on the same dataset. We chose the
most parsimonious model to reduce the number of vari-
ables that can be useful to bedside clinicians. We added
novel prediction metrics (IDI, NRI, and calibration) to aid
in determining the most parsimonious clinical model and
the usefulness of adding available plasma biomarkers to
the baseline model.
In summary, our results show that in critically ill patients

receiving RRT, a simple four-variable clinical model con-
sisting of age, mean arterial pressure, mechanical ventila-
tion, and bilirubin, together with IL-8, augments risk
prediction for renal recovery and mortality at day 60 and
could potentially be useful at the bedside for clinicians.
Although we did a cross-validation within our study
cohort, our findings require external validation before
they can be applied to other patient populations.
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