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Arterial Stiffness and Decline in Kidney Function
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Abstract
Background and objectives The independent link between arterial stiffness and CKD remains unknown. We
investigated the association of indicators of arterial stiffness with decline in kidney function.

Design, setting, participants, & measurements We studied 3666 participants (mean age =65 years old; 58%
women) from the Rotterdam Study. Pulse pressure (PP), carotid stiffness, and pulse wave velocity (PWV) were
measured.We created genetic risk scores for PP and PWV. Annual declines in kidney function and incident CKD
were assessed using eGFR. To put our findings in context of the literature, we performed a meta-analysis of the
available population–based studies.

ResultsAfter amedian (interquartile range) follow–up time of 11 (10.7–11.3) years, 601 participants with incident
CKD were recognized. In the model adjusted for age, sex, mean arterial pressure, heart rate, and baseline GFR,
each SD higher PP was associated with 0.15-ml/min per 1.73 m2 steeper annual eGFR decline (95% confidence
interval [95%CI], 0.10 to 0.20) and 11% higher risk of incident CKD (95%CI, 1.05 to 1.18). Each SD greater carotid
stiffnesswas associatedwith 0.08-ml/min per 1.73m2 steeper annual eGFR decline (95%CI, 0.04 to 0.13) and 13%
higher risk of incident CKD (95% CI, 1.05 to 1.22). Each SD higher PWV was associated with 7% higher risk of
incident CKD (95% CI, 1.00 to 1.14). Incorporating our findings in a meta-analysis, each SD higher PP and PWV
were associated with 16% (95% CI, 1.12 to 1.21) and 8% (95% CI, 1.03 to 1.14) higher risks of incident CKD. Each
SD higher PP genetic risk score was associated with 0.06-ml/min per 1.73 m2 steeper annual eGFR decline (95%
CI, 0.01 to 0.10) and 8%higher risk of incident CKD (95%CI, 1.03 to 1.14). Therewas no association between PWV
genetic risk score and kidney function decline.

Conclusions Higher indices of arterial stiffness are associated with steeper decline in kidney function. This
suggests that vascular stiffness could be considered as a target for delaying decline in kidney function.
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Introduction
Considerable proportions of patients with CKD carry
multiple cardiovascular risk factors and die from
cardiovascular causes (1). Accumulating evidence
suggests a strong association between cardiovascular
pathology and CKD. Nevertheless, exact mechanisms
linking cardiovascular diseases with kidney impair-
ment remain to be elucidated (2).

The role of vascular risk factors has been implicated
in the association between cardiovascular disease and
CKD (3). One of the novel risk factors proposed for
cardiovascular disease is arterial stiffness (4). Arterial
stiffness, independent of mean arterial pressure, re-
sults in end organ damage by imposing hemody-
namic stress on vascular beds (5). Aortic stiffening,
especially in older people, facilitates transmission of
excessive pressure and flow pulsatility into the micro-
vascular beds of the kidneys, a high-flow organ,
which will potentially lead to microvascular ischemia
and tissue damage (6).

Several studies have investigated an independent
association between arterial stiffness and decline in
kidney function, but the results have been inconsistent

(7–14). Heterogeneity in the study populations and
the limited power of the individual studies could un-
derlie the inconsistent findings. In addition, all obser-
vational studies are subject to confounding and
reverse causation. Relevant genetic variants could
potentially be used to overcome these flaws (15).
We aimed to investigate the association between

arterial stiffness as well as genetic variations related to
arterial stiffness with the risk of decline in kidney
function in the Rotterdam Study (RS), a population-
based study of individuals 55 years old and older.
Moreover, to put our findings in the context of the
literature, we performed a meta-analysis of population-
based studies on the association of arterial stiffness
markers and risk of kidney disease.

Materials and Methods
Population for Analysis
This study was performed within the framework of

the population–based RS. The cohort originated in
1990 and included 7983 participants from Ommoord, a
district of Rotterdam in The Netherlands, age 55 years
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old or older (RS-I). In 2000, the first extension of the RS (RS-II)
started, adding 3011 new participants. Arterial stiffness was
evaluated at the third visit of the RS-I and the first visit of the
RS-II. All individuals with available data on arterial stiffness
markers at baseline and repeated creatinine measurements
(at baseline and the next visit) were included in the analyses.
The median (interquartile range) follow–up time elapsed be-
tween two creatinine measurements was 11 (10.7–11.3) years.
This resulted in 2950 participants with available data on
brachial pulse pressure, 2665 participants with pulse wave
velocity (PWV) data, and 2344 participants with carotid stiff-
ness data.
DNA was extracted from samples taken at the first visit

of the RS-I and at the first visit of the RS-II (n=8131).
Among them, 3666 had repeated measurements of creati-
nine for longitudinal assessment of kidney function.
The RS has been approved by the medical ethics

committee according to the Population Study Act RS
executed by the Ministry of Health, Welfare and Sports
of The Netherlands. Written informed consent was ob-
tained from all participants (16).

Measurement of Arterial Stiffness
Carotid femoral PWV was measured with participants in

supine position with an automatic device (Complior Artech
Medical, Pantin, France) that measures the time delay
between the rapid upstroke of the feet of simultaneously
recorded pulse waves in the carotid artery and the femoral
artery (17). The distance between the recording sites in the
carotid and the femoral artery was measured with a tape
over the surface of the body. PWV was calculated as the
ratio between distance and the foot-to-foot time delay, and
it was expressed in meters per second.
Common carotid stiffness was assessed with the partic-

ipants in supine position with heads tilted slightly to the
contralateral side for the measurement in the common
carotid artery (18). The vessel wall motion of the right
common carotid artery was measured by means of a duplex
scanner (ATL Ultramark IV; operating frequency =7.5 MHz)
connected to a vessel wall movement detector system
(18,19). After 5 minutes of rest, a region at 1.5 cm proximal
to the origin of the bulb of the carotid artery was identified
with the use of B-mode ultrasound. The displacement of the
arterial walls was obtained by processing the radiofrequency
signals originating from two selected sample volumes po-
sitioned over the anterior and posterior walls. The end di-
astolic diameter (D), the absolute stroke change in diameter
during systole (DD), and the relative stroke change in di-
ameter (DD/D) were computed as the mean of four cardiac
cycles of three successive recordings. The cross–sectional
arterial wall distensibility coefficient was calculated according
to the following equation: distensibility coefficient =2DD/
(D3 pulse pressure) (1023 per kilopascal) (18,20). Lower
carotid distensibility represents greater carotid stiffness.
Heart rate was measured simultaneously with arterial

stiffness measurements. Three observers performed all mea-
surements. In a reproducibility study performed among 47
individuals who were invited two times exactly 1 week
apart, the intraclass correlation coefficient was 0.80 for both
the PWV and the carotid distensibility coefficient (19,21).
After 5 minutes of rest, systolic and diastolic BPs were
measured two times on the right arm with a random

zero sphygmomanometer, and the mean was taken as the
individuals’ reading. Pulse pressure was estimated as the
difference between systolic and diastolic BPs.

Genetic Risk Score
Genotyping was conducted using the Illumina 550K

Array among self–reported white individuals. Imputation
was done with reference to HapMap release 22 Utah res-
idents of Northern and Western European ancestry using
the maximum likelihood method implemented in MaCH
(version 1.0.15).
We selected single-nucelotide polymorphisms (SNPs)

reported in genome–wide association studies (GWAS) to
be associated with pulse pressure and PWV (22,23). There
is no GWAS available on carotid stiffness. Genetic risk
score was formed using 10 SNPs associated with pulse
pressure and 9 SNPs associated with PWV (Supplemental
Table 1). For variants in the same locus, the variant with
the smallest P value was selected. We calculated a
weighted genetic risk score by multiplying the number
of risk alleles at each locus by the corresponding reported
coefficient from the previous GWASs and summing the
products. The total score was then divided by the average
effect size and multiplied by 100 to rescale the scores to a
range between 0 and 100.

Measurement of eGFR
Serum creatinine was determined using an enzymatic

assay method. Interassay and intra–assay coefficient var-
iations were ,0.92% and ,1.37%, respectively. We cali-
brate creatinine measurements by aligning the mean
values of creatinine with creatinine values of the partici-
pants of the National Health and Nutrition Examination
Survey III in different sex and age groups (,60, 60–69, and
$70 years old) (24). eGFR was calculated according to the
Chronic Kidney Disease Epidemiology Collaboration
Equation (25). To calculate the annual eGFR decline, we
first subtracted the eGFR estimates of the follow-up exam-
ination from the eGFR estimates at baseline and then di-
vided by the time between the two visits. CKD was
defined as eGFR,60 ml/min per 1.73 m2. Patients with
incident CKD were defined as individuals free of CKD at
baseline (eGFR.60 ml/min per 1.73 m2) who had a de-
cline in eGFR to ,60 ml/min per 1.73 m2 between the two
periodic examinations (26).

Statistical Analyses
Association of measures of arterial stiffness with annual

decline in eGFR and incidence of CKDwas evaluated using
linear regression models and log binomial regressions,
respectively. Coefficients were estimated per SD higher
PWV and pulse pressure. Coefficients were estimated per
negative SD higher measures of carotid distensibility, which
represents greater carotid stiffness. In the first model, analyses
were adjusted for age, sex, mean arterial pressure, heart rate,
baseline eGFR, and follow-up time (for analyses on incidence
of CKD). In the second model, we further adjusted for body
mass index, alcohol consumption, smoking, HDL cholesterol,
total cholesterol, history of diabetes mellitus and coronary
heart disease, and different types of antihypertensive medi-
cations (diuretics, b-blockers, angiotensin-converting-enzyme
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inhibitors, and calcium channel blockers). Missing values on
covariates were imputed using the expectation maximization
method (single imputation). The percentage of missing values
on covariates was not substantial and ranged from 0.2% to
13.3%. In addition, because an interaction between BP and
PWV as biomarkers and indicators of hemodynamic status
has been suggested previously (27), we assessed the interac-
tion of PWV and systolic and diastolic BPs by adding an
interaction term in the regression model. The interaction
term was the product of the PWV and systolic or diastolic
BP. In an extra analysis, we adjusted the associations of arte-
rial stiffness genetic risk scores with decline in kidney func-
tion for measures of pulse pressure and PWV. All analyses
were adjusted for the effect of the two RS cohorts and carried
out using STATA 13.1 or R, version 2.15.0.

Meta-Analysis
We searched for studies published in MEDLINE, EMBASE,

Web of Science, and Google Scholar using the common
key words related to arterial stiffness and incident CKD
(Supplemental Appendix). Population-based studies evalu-
ating the association between indicators of arterial stiffness
and incidence of CKD were included (Supplemental Table 2)
(10–14). Supplemental Figure 1 shows the flow diagram for
inclusion of the relevant studies in our meta-analyses. Inci-
dent CKD was defined as eGFR,60 ml/min per 1.73 m2 in
all included studies except one study, in which eGFR loss of
.3 ml/min per 1.73 m2 was used (13). We excluded one
study from the meta-analysis of pulse pressure, because the

outcome was reported continuously for each milliliter per
minute per 1.73 meter2 decline in eGFR (14). We performed
random and fixed effect meta–analyses including the current
RS. The heterogeneity assumption was investigated using a
commonly used statistical method, namely the I2 statistic.
There was no evidence of publication bias using Egger’s test.

Results
Baseline characteristics of participants are presented in

Table 1. Mean age of the participants was 6566.7 years
old, and 58.3% were women. Figure 1 shows the means
and SEMs of pulse pressure and PWV in tertiles of pulse
pressure and the PWV genetic risk scores.
Table 2 shows the association between indicators of ar-

terial stiffness and kidney function. In the first model, we
observed that higher pulse pressure and greater carotid
stiffness were associated with steeper annual decline in
eGFR and higher risk of incident CKD. Adjusting for ad-
ditional potential confounders, in the second model, did
not substantially change the association. There was no as-
sociation between PWV and annual decline in eGFR.
Higher PWV was associated with higher risk of incident
CKD. Furthermore, we did not observe any statistically
significant interaction between PWV and systolic or dia-
stolic BP (Supplemental Table 3). However, the association
was not present after adjustment for potential confounders
in the second model (Table 2). To provide more reliable
estimates, we performed a meta-analysis of the available
studies (including this study) to report the association of

Table 1. Baseline characteristics of participants

Characteristics (n=3666) Value

Age (yr), mean (SD) 65.0 (6.7)
Women, n (%) 2139 (58.3)
Body mass index (kg/m2), mean (SD) 26.6 (3.6)
Total cholesterol (mg/dl), mean (SD) 246.9 (46.1)
HDL cholesterol (mg/dl), mean (SD) 52.5 (14.5)
Alcohol intake (g/d), median (interquartile range) 4.8 (0.33–16.6)
Smoking, n (%)
Current 755 (20.6)
Former 1649 (45.0)

Systolic BP (mmHg), mean (SD) 137.3 (19.9)
Diastolic BP (mmHg), mean (SD) 75.4 (10.9)
Pulse rate (beats per minute), mean (SD) 72.2 (11.4)
Mean arterial pressure (mmHg), mean (SD) 96.0 (12.6)
Pulse pressure (mmHg), mean (SD)a 62.5 (15.5)
Pulse wave velocity (m/s), mean (SD)a 12.2 (2.5)
Carotid distensibility coefficient (1023/kPa), mean (SD)a 12.9 (4.6)
GFR (ml/min per 1.73 m2), mean (SD) 79.3 (13.7)
Diabetes mellitus, n (%) 279 (7.6)
History of coronary heart disease, n (%) 327 (8.9)
Antihypertensive medication, n (%)
Diuretics 355 (9.7)
ACE inhibitors 204 (5.6)
Calcium channel blocker 177 (4.8)
b-Blocker 503 (13.7)

ACE, angiotensin-converting-enzyme.
aData are on the basis of the correspondence sample size (pulse pressure, n=2950; pulse wave velocity, n=2665; and carotid distensi-
bility, n=2344).
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pulse pressure and PWV with incident CKD (Figure 2).
Combining the effect estimates of our study with three
previous population–based studies, we observed the over-
all relative risk of 1.16 (95% confidence interval [95% CI],
1.12 to 1.21) for each SD higher pulse pressure in respect to
incident CKD. Test for heterogeneity resulted in moderate
estimates (I2=75%; 30.6%–91%). Excluding the study with
outcome defined as eGFR loss of .3 ml/min per 1.73 m2

resulted in no heterogeneity (Supplemental Figure 2). Re-
garding PWV, we observed the overall relative risk of 1.08
(95% CI, 1.03 to 1.14) for incident CKD per each SD higher
PWV. The test for heterogeneity resulted in moderate es-
timates (I2=59.5%; 0%–86.5%). Excluding the study with
carotid brachial PWV measures reduced the heterogeneity
(I2=24%; 0%–92.1%) (Supplemental Figure 2).

Pulse pressure genetic risk score was associated with
steeper annual decline in eGFR and higher risk of incident
CKD (relative risk, 1.08; 95% CI, 1.03 to 1.14) (Table 3).
There was no association between PWV genetic risk score
and kidney function. Adjusting the associations for pulse
pressure and PWV measurements changed the associa-
tions minimally (Supplemental Table 4).
Given the correlation between pulse pressure and BP, we

investigated if any of the pulse pressure genes are associ-
ated with systolic or diastolic BP in our sample (Supple-
mental Table 5). After Bonferroni correction (adjusted
P value of 0.002), none of the variants were significantly asso-
ciated with BP measures; however, an SNP in the PIK3CG
gene and an SNP in the PLCE-1 gene were suggestively
associated with systolic BP (P=0.003). Excluding these

Figure 1. | Linear association between arterial stiffness measures and their corresponding genetic risk scores. (A) Mean and SEM of pulse
pressure in tertiles of pulse pressure genetic risk score. (B) Mean and SEM of pulse wave velocity in tertiles of pulse wave velocity genetic risk
score. Analyses are adjusted for age and sex. 95% CI, 95% confidence interval.

Table 2. Association of measures of arterial stiffness with decline in eGFR and incidence of CKD

Regression Models

eGFR Decline Incident CKD

Difference 95% Confidence
Interval P Value Relative

Risk
95% Confidence

Interval P Value

Pulse pressure
(n=2950)

Model 1 0.15 0.10 to 0.20 ,0.001 1.11 1.05 to 1.18 ,0.001
Model 2 0.13 0.09 to 0.18 ,0.001 1.10 1.03 to 1.17 0.002

Carotid stiffness
(n=2342)

Model 1 0.08 0.04 to 0.13 ,0.001 1.13 1.05 to 1.22 0.001
Model 2 0.07 0.02 to 0.11 0.002 1.13 1.05 to 1.22 0.001

Pulse wave velocity
(n=2665)

Model 1 0.04 20.00 to 0.09 0.07 1.07 1.01 to 1.14 0.04
Model 2 0.02 20.02 to 0.07 0.33 1.05 0.99 to 1.31 0.10

Differences (coefficients) and relative risks are calculated per each SD of arterial stiffness measures. Model 1 is adjusted for age, sex,
mean arterial pressure, heart rate, baseline eGFR, and follow-up time (for analyses on incidence of CKD). Model 2 is additionally
adjusted for body mass index, alcohol consumption, smoking, HDL cholesterol, total cholesterol, diuretics, angiotensin-converting-
enzyme (ACE) inhibitors, b-blockers, calcium channel blockers, and history of diabetes and coronary heart disease.
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SNPs from the genetic risk score of pulse pressure did not
essentially change the associations (Supplemental Table 6).

Discussion
We showed that markers of arterial stiffness are indepen-

dently associated with future decline in kidney function. This
study provides additional evidence for the association
between pulse pressure and decline in kidney function using
genetic variability in pulse pressure.
Previous studies on the association between arterial

stiffness and decline in kidney function have been inconsis-
tent (7,9–14,28). In a study including patients with CKD,
Ford et al. (9) showed that higher PWV but not pulse pres-
sure was associated with the rate of change in kidney func-
tion. Similarly, in a Japanese cohort, an association was
observed between higher brachial PWV and steeper decline
in eGFR (11). In contrast, results of the Framingham Off-
spring Cohort showed that PWV is associated with the in-
cidence of albuminuria but not mild to moderate CKD (12).
In this study, we observed an association between pulse
pressure and decline in kidney function, but the association

between PWV and CKD disappeared after adjustment for
cardiovascular risk factors. To improve the power, increase
generalizability, and decrease heterogeneity, we combined
our results with the effect estimates of the population–based
studies and provided additional support for an independent
link between PWV and decline in kidney function.
Pulse pressure and PWV are two commonly used mea-

sures of arterial stiffness. Arterial stiffness is not uniform along
the arterial tree; therefore, assessment of arterial stiffness at
different sites in relation to clinical outcomes is important
(29). We have previously shown that arterial stiffness mea-
sured as carotid femoral PWV is associated with cardiovas-
cular morbidity and mortality; however, we did not observe
such an association with stiffness in the carotid artery. Pre-
vious studies showed that local carotid arterial stiffness is
associated with brain outcomes (direct organ supplies by
carotid arteries). In this study, we showed an independent
association between carotid stiffness and decline in kidney
function. Both kidney and brain are low–resistance, high–
flow end organs, which renders them vulnerable to pulsatile
changes in the blood flow. This might suggest that systemic
pulsatile pressure can cause vascular injury in both organs.

Figure 2. | Higher pulse pressure and pulse wave velocity are associated with higher risk of incident CKD. Forest plots of multivariate–
adjusted relative risks (RRs) for the association of each SD of (A) pulse pressure and (B) pulse wave velocity with incident CKD (11). Health ABC,
health, aging, and body composition; 95% CI, 95% confidence interval.
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Future studies are needed to investigate the mechanism be-
hind the association between carotid stiffness and decline in
kidney function.
We observed that pulse pressure genetic variants but not

PWV genetic variants are associated with kidney function
decline. Our findings can be explained by relatively more
power for pulse pressure given the stronger association of
pulse pressure with kidney function compared with PWV.
It is also known that pulse pressure is not only the indicator
of arterial stiffness but also, influenced by peak systolic BP
(30). Some of the genes found for pulse pressure are
known to be associated with BP variation (31–33). How-
ever, adjustment for BP and excluding SNPs with sugges-
tive association with systolic BP did not change the
associations.
There are different putative mechanisms suggesting a

role for arterial stiffness in the deterioration of kidney
function. A plausible mechanism is that arterial stiffness
increases circumferential and shear stresses in the arterial
lumen. This hemodynamic stress on the kidney vasculature
may result in endothelial dysfunction and microvascular
ischemia, leading to kidney injury (34). Other possible
mechanisms include chronic inflammation, oxidative
stress, and activation of the renin-angiotensin system (12).
We performed these analyses in a large population–

based study, which enables us to control for several po-
tential confounders and see the small effects of the genes.
In addition, we performed a meta-analysis to provide a
more precise estimate of the association. We confirmed
the association between pulse pressure and kidney func-
tion using genetic variants as the less-biased proxies for
the arterial stiffness parameters. As a limitation, data on
albuminuria were unavailable, and it is an important ele-
ment in defining CKD. However, eGFR,60 ml/min per
1.73 m2 is a well accepted definition for CKD in population–
based research settings (35). Furthermore, adjustments
for pulse pressure changed the association between ge-
netic variants of pulse pressure and kidney disease only
minimally; this might indicate that our findings with
pulse pressure genetic risk score could be partially explained

by pleiotropic effects in the genetic risk score, such as BP
genetic variants. In computing the carotid distensibility co-
efficient, we used the brachial pulse pressure rather than the
carotid pulse pressure. Substantial differences have been
reported between carotid and brachial pulse pressures,
which can lead to an underestimation of the distensibil-
ity measurements and subsequently, an underestimation
of the association with the disease (4).
Currently, major strategies to prevent CKD are focused

on conventional cardiovascular risk factors, and in this
study, we showed that vascular stiffness independent of
cardiovascular risk factors is associated with decline in
kidney function. This highlights that vascular stiffness can
be considered as a target for delaying decline in kidney
function.
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Table 3. Association of genetic risk scores for measures of arterial stiffness with annual decline in eGFR and incidence of CKD

Regression Models

eGFR Decline Incident CKD

Difference 95% Confidence
Interval P Value Relative

Risk
95% Confidence

Interval P Value

Pulse pressure
GRS (n=3666)

Model 1 0.06 0.01 to 0.10 0.01 1.08 1.03 to 1.14 0.003
Model 2 0.05 0.01 to 0.11 0.02 1.07 1.02 to 1.13 ,0.01
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Model 2 3.631023 20.04 to 0.05 0.87 1.03 0.98 to 1.08 0.17

Differences (coefficients) are per SD of pulse pressure genetic risk score (GRS) and pulsewave velocityGRS.Model 1 is adjusted for age,
sex, mean arterial pressure, heart rate, baseline eGFR, and follow-up time (for analyses on incidence of CKD). Model 2 is additionally
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