Editorials

2101 Infections Requiring Hospitalization in Patients on Hemodialysis
 David T. Gilbertson and James B. Wetmore
 See related article on page 2170.

2104 Frailty and Cognitive Impairment in ESRD: Brain-Body Connections
 Stephen L. Seliger
 See related article on page 2181.

2107 Targeting Blood Vessel Stiffness to Protect Kidney Function
 Neeraj Dhaun and David J. Webb
 See related article on page 2190.

Original Articles

Acute Kidney Injury

2110 AKI in Children Hospitalized with Nephrotic Syndrome
 Michelle N. Rheault, Lei Zhang, David T. Selewski, Mahmoud Kallas, Cheryl L. Tran, Meredith Seamon, Chryso Katsoufis, Isa Ashoor, Joel Hernandez, Katarina Supe-Markovina, Cynthia D’Alessandri-Silva, Nilka DeJesus-Gonzalez, Tetyana L. Vasylieva, Cassandra Formeck, Christopher Woll, Rasheed Gbadegesin, Pavel Geier, Prasad Devarajan, Shannon L. Carpenter, Bryce A. Kerlin, and William E. Smoyer on behalf of the Midwest Pediatric Nephrology Consortium

Chronic Kidney Disease

2119 Plasma Vitamin D Level and Change in Albuminuria and eGFR According to Sodium Intake

2128 Examination of Potential Modifiers of the Association of APOL1 Alleles with CKD Progression
 Teresa K. Chen, Michael J. Choi, W.H. Linda Kao, Brad C. Astor, Julia J. Scialla, Lawrence J. Appel, Liang Li, Michael S. Lipkowitz, Myles Wolf, Rulan S. Parekh, Cheryl A. Winkler, Michelle M. Estrella, and Deidra C. Crews

Clinical Nephrology

2136 Randomized Clinical Trial of Sodium Polystyrene Sulfonate for the Treatment of Mild Hyperkalemia in CKD
 Laurence Lepage, Anne-Claude Dufour, Jessica Doiron, Katia Handfield, Katherine Desforges, Robert Bell, Michel Vallée, Michel Savoie, Sylvie Perreault, Louis-Philippe Laurin, Vincent Pichette, and Jean-Philippe Latraverse

2143 Association of Serum C3 Concentration and Histologic Signs of Thrombotic Microangiopathy with Outcomes among Patients with ANCA-Associated Renal Vasculitis
 Lucio Manenti, Augusto Vaglio, Elisa Gnappi, Umberto Maggiore, Landino Allegri, Marco Allinovi, Maria L. Urban, Marco Delsante, Maricla Galetti, Maria Nicastro, Francesco P. Pilato, and Carlo Buzio

Diabetes and the Kidney

2152 Urinary Potassium Excretion and Renal and Cardiovascular Complications in Patients with Type 2 Diabetes and Normal Renal Function
 Shin-ichi Araki, Masakazu Haneda, Daisuke Koya, Keiko Kondo, Sachiko Tanaka, Hisatomi Arima, Shinji Kume, Jun Nakazawa, Masami Chin-Kanasaki, Satoshi Ugi, Hiromichi Kawai, Hisazumi Araki, Takashi Uzu, and Hiroshi Maegawa
Diabetes and the Kidney (Continued)

BP and Renal Outcomes in Diabetic Kidney Disease: The Veterans Affairs Nephropathy in Diabetics Trial
David J. Leehey, Jane H. Zhang, Nicholas V. Emanuele, Adam Whaley-Connell, Paul M. Palevsky, Robert F. Reilly, Peter Guarino, and Linda F. Fried for the VA NEPHRON-D Study Group

Epidemiology and Outcomes

Risk Factors for Infection-Related Hospitalization in In-Center Hemodialysis
Lorien S. Dalrymple, Yi Mu, Danh V. Nguyen, Patrick S. Romano, Glenn M. Chertow, Barbara Grimes, George A. Kaysen, and Kirsten L. Johansen
See related editorial on page 2101.

Frailty and Cognitive Function in Incident Hemodialysis Patients
Mara A. McAdams-DeMarco, Jingwen Tan, Megan L. Salter, Alden Gross, Lucy A. Meoni, Bernard G. Jaar, Wen-Hong Linda Kao, Rulan S. Parekh, Dorry L. Segev, and Stephen M. Sozio
See related editorial on page 2104.

Arterial Stiffness and Decline in Kidney Function
Sanaz Sedaghat, Francesco U.S. Mattace-Raso, Ewout J. Hoorn, Andre G. Uitterlinden, Albert Hofman, M. Arfan Ikram, Oscar H. Franco, and Abbas Dehghan
See related editorial on page 2107.

Long-Term Risk of Cancer in Survivors of Pediatric ESRD
Sophie Ploos van Amstel, Judith L. Vogelzang, Marcus V. Starink, Kitty J. Jager, and Jaap W. Groothoff

ESRD and Chronic Dialysis

Insulin Resistance in Nondiabetic Peritoneal Dialysis Patients: Associations with Body Composition, Peritoneal Transport, and Peritoneal Glucose Absorption
Ana Paula Bernardo, Jose C. Oliveira, Olivia Santos, Maria J. Carvalho, Antonio Cabrita, and Anabela Rodrigues

Renal Physiology

Acid-Base Homeostasis
L. Lee Hamm, Nazih Nakhoul, and Kathleen S. Hering-Smith

Renal Immunology

Cytokines: Names and Numbers You Should Care About
Stephen R. Holdsworth and Poh-Yi Gan

Attending Rounds

A Patient with Recurrent Arteriovenous Graft Thrombosis
Michael Allon
Ethics Series

2263 Balancing the Duty to Treat Patients with Ebola Virus Disease with the Risks to Dialysis Personnel
Nicholas G. Evans

In-Depth Review

2268 Mild Chronic Hyponatremia in the Ambulatory Setting: Significance and Management
Helbert Rondon-Berrios and Tomas Berl

Special Feature

2279 Human Heredity and Health (H3) in Africa Kidney Disease Research Network: A Focus on Methods in Sub-Saharan Africa
Charlotte Osafo, Yemi Raheem Raji, David Burke, Bamidele O. Tayo, Nicki Tiffin, Marva M. Moxey-Mims, Rebekah S. Rasooly, Paul L. Kimmel, Akinlolu Ojo, Dwomoa Adu, Rulan S. Parekh, and the H3Africa Kidney Disease Research Network Investigators as members of The H3Africa Consortium

On the Cover

What’s the diagnosis? A 63-year-old woman with an aggressive B-cell lymphoma underwent therapy with high-dose methotrexate following bicarbonate-containing intravenous fluid prophylaxis. Acute kidney injury (AKI) developed over the next 48 hours with serum creatinine rising to 1.7 mg/dl. Urine microscopy revealed numerous brownish/gold methotrexate crystals both in clumps (cover image) and in casts. Acute kidney injury from methotrexate-associated crystalline nephropathy was considered likely. Intravenous fluids containing bicarbonate were continued with the goal of high urine flow rates (> 150 ml/hour) and a urine pH of > 7.0. Over the next 48-72 hours, kidney function improved with serum creatinine approaching baseline. Methotrexate is a dihydrofolate reductase inhibitor that is employed to treat various malignancies, in particular high-grade lymphomas. Methotrexate when employed in high doses has been described to cause kidney injury through multiple possible mechanisms. In general, intratubular crystal precipitation is the most commonly described form of acute nephrotoxicity. AKI may occur from some combination of tubular obstruction from the crystals or an inflammatory reaction to the crystals. The former cause may have been more likely in our patient due to the rapidity of AKI following methotrexate administration, but a component of interstitial inflammation is impossible to exclude without a kidney biopsy. Risk factors for intratubular precipitation of methotrexate and its metabolites include low urine pH, volume depletion with low urinary flow rates, and with high urinary methotrexate concentrations associated with high dose therapy. Another potential cause of AKI includes tubular apoptosis/necrosis from lipid peroxidation that is associated with decreased adenosine deaminase activity following methotrexate therapy. (Images and text provided by Mark A. Perazella, MD, Yale University School of Medicine, New Haven, Connecticut)