Pharmacokinetics of Moxifloxacin and Levofloxacin in Intensive Care Unit Patients Who Have Acute Renal Failure and Undergo Extended Daily Dialysis

David Czock,* Cordula Hüsig-Linde,† Anita Langhoff,† Timo Schöpke,† Carsten Hafer,† Kirsten de Groot,† Stefanie Swoboda,† Ernst Kuse,§ Hermann Haller,† Danilo Fliser,† Frieder Keller,* and Jan T. Kielstein†

*Division of Nephrology, University Hospital Ulm, Ulm, †Division of Nephrology and §Department of Abdominal and Transplant Surgery, Hannover Medical School, Hannover, and ‡Pharmacy Department, University of Heidelberg, Heidelberg, Germany

Extended daily dialysis (EDD) is increasingly popular in the treatment of acute renal failure (ARF). EDD could remove drugs to a much different degree compared with intermittent standard hemodialysis or continuous renal replacement therapies; however, there are only scarce data on how EDD influences the pharmacokinetics of frequently used drugs. The aim of this study was to determine the pharmacokinetics of two quinolone antibiotics in patients who had anuric ARF and were being treated with EDD. Adult patients who were in the intensive care unit at a tertiary care university hospital and receiving moxifloxacin (n = 10) or levofloxacin (n = 5) therapy were included. The antibiotics were administered intravenously 8 h (400 mg of moxifloxacin) or 12 h (500 mg of levofloxacin) before EDD to study pharmacokinetics off and on EDD. Treatment lasted 8 h; blood and dialysate flow rates were 160 ml/min. In addition to standard pharmacokinetic parameters, the total dialysate concentration of both drugs was measured using a technically simple single-pass batch dialysis system for EDD. Moxifloxacin pharmacokinetics in critically ill patients who had ARF and were undergoing EDD were similar to those in healthy subjects without renal impairment. Levofloxacin, although removed by EDD, had a lower total clearance compared with healthy subjects. According to these findings, anuric critically ill patients who are undergoing EDD should be treated with the standard dosage of moxifloxacin (400 mg/d intravenously). The levofloxacin dosage, however, should be reduced according to the intensity of renal replacement therapy.


Fluoroquinolones have enjoyed enormous clinical success in the past 20 yr. The most widely used group II fluoroquinolones (ciprofloxacin and ofloxacin) exhibit activity mainly against Gram-negative bacteria. Recently, group III (levofloxacin) and group IV (moxifloxacin) fluoroquinolones, which possess an improved activity against Gram-positive pathogens while maintaining similar activity against many Gram-negative bacteria, increasingly have been used (1).

In intensive care unit (ICU) patients who have sepsis and multiple organ failure, extended daily dialysis (EDD) represents an important extracorporeal renal replacement therapy that is increasingly used in ICU throughout Europe, the United States, and Brazil (2–8). EDD could remove drugs to a much different degree compared with standard intermittent hemodialysis (IHD) three times a week or continuous renal replacement therapy (CRRT) (9). Nevertheless, only scarce data are available on the effect of this highly efficient renal replacement therapy on the elimination of frequently used drugs in critically ill patients with renal failure (10–13). The aim of our study was to investigate the pharmacokinetics of moxifloxacin and levofloxacin in anuric critically ill patients who were undergoing EDD. Because there is no reliable standard approach, we applied various methods to estimate extracorporeal drug removal.

Materials and Methods

Patients and Study Protocol

Adult ICU patients who had anuric acute renal failure (ARF) and were being treated with EDD and receiving either moxifloxacin (n = 10) or levofloxacin (n = 5) were enrolled. The choice of the antibiotic for each patient was made on clinical grounds. Patients were included into the study after informed consent had been obtained from the patient or the patient’s legal representative. Moxifloxacin (400 mg) was infused intravenously in 10 patients during a period of 60 min, 8 h before EDD was started. Because the plasma half-life of levofloxacin in renal failure is known to be substantially increased, levofloxacin (250 or 500 mg) was infused during a period of 60 min even 12 h before EDD was started. This approach was chosen to study the pharmacokinetics of the two drugs off and on dialysis in the same patient while avoiding interday variability. The study protocol was approved by the Hannover Medical
EDD was performed using the GENIUS batch dialysis system (Fresenius Medical Care, Bad Homburg, Germany) with a polysulfone high-flux dialyzer (F605, surface area 1.3 m²; Fresenius Medical Care) as described previously (14,15). The technical details of the system are explained elsewhere (16). In brief, sterile bicarbonate dialysate is filled into a 75-L tank and subsequently is circulated in a closed-loop circuit. During dialysis, fresh dialysate is taken from the top of the tank while the spent dialysate flows back to the bottom. Complete collection of spent dialysate in the same tank after the dialysis session permits estimation of the total amount of a substance that is removed, assuming that adsorption of the substance to the dialyzer system is negligible. The average dialysis time during the study was 481 ± 9 min, and mean blood and countercurrent dialysate flow was 161 ± 4 ml/min. Vascular access in all patients was achieved by a double-lumen catheter inserted either into the internal jugular or into the femoral vein.

Blood samples were drawn from the arterial line placed in the radial or femoral artery before as well as 0.5, 1, 2, 4, 6, and 8 h after administration of moxifloxacin or levofloxacin. In the case of levofloxacin, an additional blood sample was obtained 12 h after administration of the drug. Additional blood samples were drawn before and during dialysis at time points 2, 4, and 6 h; at the end of dialysis; and 0.5, 1, 3, and 8 h after the end of the EDD treatment. Extra blood samples were drawn before and after dialyzer (i.e., from the afferent “artery” and efferent “venous” dialyzer blood tubing) to calculate the dialyzer clearance from the pre- and postdialyzer concentration difference and the estimated plasma flow. In addition, total drug removal was estimated by measurement of drug concentration in the spent dialysate, because the GENIUS system permits easy access to the entire used dialysate (16).

**Chemical Assays**

Moxifloxacin plasma concentrations were determined by HPLC with fluorometric detection similar to a previously described method (17). Shortly, an internal standard was added to 100 μL of plasma or dialysate. After protein precipitation of the sample, liquid chromatography and fluorescence detection were performed using an HP 1090 instrument (Hewlett-Packard, Waldbronn, Germany), equipped with a fluorescence detector (HP 1046 A; excitation at 296 nm and emission at 504 nm for all analyses). The autosampler temperature was kept at 8°C using a Haake D 8 water bath. A Nucleosil 100 C18 (5-μm particle size, 2.0 mm ID) was used for separation. The column oven temperature was set to 50°C. The mobile phase consisted of water, methanol, triethylamine, and orthophosphoric acid (750:500:10:1 vol/vol/vol/vol). After centrifugation (7826 × g, 10 min, 10°C) 20 μL of the supernatant was applied to the analytical column (Waters Symmetry column C18 5 μm, 150 × 4.6 mm; Eschborn, Germany). The mobile phase consisted of water, methanol, triethylamine, and orthophosphoric acid (750:250:4:2.5 vol/vol/vol/vol). All analyses were performed at room temperature. The fluorescence detector (Perkin Elmer, Überlingen, Germany) was set at excitation and emission wavelengths of 295 and 490 nm, respectively. At a flow rate of 1.5 ml/min, the retention times of levofloxacin and ciprofloxacin were 4.3 min and 6.0 min, respectively.

The calibration curve was linear over the usable concentration range from 0.1 to 40 mg/L. The intra- and interday coefficients of variation were determined using 1, 4, and 8 mg/L levofloxacin and were <5%. Limit of quantification was determined as 0.01 mg/L, and the limit of detection was 0.001 mg/L.

**Pharmacokinetic Calculations**

Pharmacokinetic parameters of moxifloxacin and levofloxacin on and off EDD were estimated by noncompartmental methods. The half-life on (T½(on)) and off (T½(off)) EDD was estimated from the concentration decline during and after EDD. The drug clearance without EDD was calculated as CLoff = D/AUCoff (dose/area under the curve [AUC]). In the case of a first dose, the AUCoff was extrapolated from the beginning of EDD to infinity using T½off. In the case of steady-state conditions after multiple doses (two patients in the levofloxacin group had received levofloxacin over 9 d before the study), the AUCoff was extrapolated to the end of the individually applied dosage interval disregarding EDD. The apparent volume of distribution was estimated as Vd = CLoff × T½off/ln(2).

Because there is no standard approach, we applied five methods to estimate drug removal by hemodialysis. In method 1, the dialysis clearance was calculated from the area under the curve during EDD (AUCwithEDD), the drug concentration (C dial), and amount of dialysate (V dial) as CLdial = C dial × V dial/AUCwithEDD. In method 2, the dialysis clearance was estimated from concentrations before (C in) and directly after (C out) the dialysis membrane as CLdial = (Fl in × Cin − Fl out × Cout)/C out, where the plasma flow in (Fl in) and out (Fl out) of the dialyzer was estimated using the blood flow, hematocrit, and ultrafiltration rate. In method 3, the fraction of drug removed by one EDD was calculated as fractD = 1 − exp(−CLdial × T EDD/Vd), where T EDD is the time on EDD and CLdial as derived by method 1 was applied. In method 4, the removed fraction was derived from the half-life on and off EDD as fractD = (1 − exp[−(T½off − T½on)/Vd]) × (T½off − T½on)/T½off. In method 5, the removed fraction was estimated using the AUC as fractD = (AUCwithoutEDD − AUCwithoutEDD)/AUCwithoutEDD, as described previously (19). It should be noted that the dialysis clearance is an estimate of the extracorporeal clearance by the dialysis system. The total drug clearance during dialysis could be estimated by adding CLdial and CLdial. All pharmacokinetic calculations were performed with the help of the software WinNonlin Professional 4.0.1 (Pharsight Corp., Mountain View, CA) and Excel 2000 (Microsoft Corp., Seattle, WA).

**Results**

The patient demographic and clinical information is given in Tables 1 and 2. Median serum concentration time data for moxifloxacin and levofloxacin are shown in Figures 1 and 2. The moxifloxacin clearance off dialysis was 15.7 L/h (range 8.1 to 49.3 L/h), resulting in a half-life of 12.3 h (range 3.7 to 34.0 h). Because the dialysis procedure itself added a clearance of 2.0 to 3.1 L/h, the half-life of moxifloxacin during dialysis was reduced to 6.0 h (range 3.9 to 11.0 h).

The levofloxacin clearance off dialysis was 3.07 L/h (range 2.96 to 3.17 L/h), resulting in a half-life of 34.5 h (range 21.2 to 47.7 h). Because the dialysis procedure itself added a clearance
of 2.93 to 3.12 L/h, the half-life of levofloxacin during dialysis was reduced to 10.3 h (range 10.0 to 10.6 h).

These data are summarized and compared with the results reported for IHD and CRRT in the literature in Tables 3 (moxifloxacin) and 4 (levofloxacin). No adverse effects were attributable to the use of moxifloxacin and levofloxacin in our patients.

**Discussion**

This study provides the first pharmacokinetic data of moxifloxacin and levofloxacin during EDD. The pharmacokinetic data that were obtained in this prospective study in critically ill patients who had ARF and were in the ICU document (1) that both antibiotics moxifloxacin and levofloxacin are eliminated by EDD and (2) that a dose adjustment is necessary only in the case of levofloxacin.

**Rationale for Using Different Methods to Calculate Dialysis Clearance**

We applied several methods to estimate the drug clearance by hemodialysis and the fraction of drug removed by hemodialysis because each method has its limitations. Dialysate-based methods (methods 1 and 3) depend on the stability of the drug...
Methods that use plasma concentrations before and after the dialysis membrane (method 2) provide information on the drug clearance at a given time, but drug clearance can decrease during hemodialysis. In contrast, methods that use only plasma concentrations from the patient (methods 4 and 5) depend on the terminal half-life of the drug. The estimation of this terminal half-life can be difficult when the drug distribution is not complete before the start of hemodialysis, when there is a concentration rebound after hemodialysis, and when the observation period is limited by the clinical necessity to administer the next dose.

When the various estimates for a drug are consistent with each other, the confidence in the estimate is increased. When

### Table 3. Pharmacokinetics of moxifloxacin in intensive care patients with ARF undergoing EDD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EDD</th>
<th>IHD</th>
<th>CRRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>Polysulfone 1.3 m²</td>
<td>—</td>
<td>Polyacrylonitrile 0.9 m² (Ref. 23)</td>
</tr>
<tr>
<td>Q₀, Q₀D (ml)</td>
<td>160, 160</td>
<td>—</td>
<td>150, —</td>
</tr>
<tr>
<td>T₁/₂off (h)</td>
<td>12.3 (3.7 to 34.0)</td>
<td>14.1 ± 1.23 (Ref. 28)</td>
<td></td>
</tr>
<tr>
<td>T₁/₂on (h)</td>
<td>6.0 (3.9 to 11.0)</td>
<td>11.6 ± 1.57 (Ref. 28)</td>
<td></td>
</tr>
<tr>
<td>Vd (L)</td>
<td>266 (154 to 514)</td>
<td>270 ± 133 (Ref. 23)</td>
<td></td>
</tr>
<tr>
<td>Vd (L/kg)</td>
<td>3.8 (1.9 to 7.1)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>CL₀f (L/h)</td>
<td>15.7 (8.1 to 49.3)</td>
<td>10.8 ± 7.6 (Ref. 28)</td>
<td></td>
</tr>
<tr>
<td>CL₀dial (L/h)</td>
<td>2.0 (0.0 to 4.9)²</td>
<td>5.72 ± 7.6 (Ref. 28)</td>
<td></td>
</tr>
<tr>
<td>fract₀D (%)</td>
<td>8 (0 to 23)⁴</td>
<td>34 (0 to 60)⁵</td>
<td></td>
</tr>
<tr>
<td>A₀dial (mg)</td>
<td>7 (0 to 34)</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

⁴Data are median (range). Data were compared with data that were obtained for intermittent hemodialysis (IHD) and continuous renal replacement therapy (CRRT) as reported in the literature. A₀dial total drug amount recovered from the dialysate; ARF, acute renal failure; CL₀dial, dialysis clearance due to the dialysis system; CL₀f, drug clearance off extended dialysis; fract₀D, fraction of the drug in the body removed by one dialysis treatment; T₁/₂off and T₁/₂on, half-life off and on dialysis treatment; VD, apparent volume of distribution.

²Estimated from the area under the curve (AUC) during EDD and A₀dial.

¹Estimated from drug concentrations before and after the dialysis membrane.

⁴Estimated from CL₀dial and Vd.

⁵Estimated from the half-lives off and on EDD.

⁶Estimated by AUC on the basis of method 5.

### Table 4. Pharmacokinetics of levofloxacin in intensive care patients with ARF undergoing EDD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EDD</th>
<th>IHD</th>
<th>CRRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>Polysulfone 1.3 m²</td>
<td>Cellulose acetate 2.1 m² (Ref. 26)</td>
<td>Polyamide 0.7 m² (Ref. 27)</td>
</tr>
<tr>
<td>Q₀, Q₀D (ml)</td>
<td>160, 160</td>
<td>400, 600 (Ref. 26)</td>
<td>180, —</td>
</tr>
<tr>
<td>T₁/₂off (h)</td>
<td>34.5 (21.2 to 47.7)</td>
<td>34.4 (Ref. 26)</td>
<td>—</td>
</tr>
<tr>
<td>T₁/₂on (h)</td>
<td>10.3 (10.0 to 10.6)</td>
<td>—</td>
<td>8.3 (Ref. 27)</td>
</tr>
<tr>
<td>Vd (L)</td>
<td>114 (74 to 155)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Vd (L/kg)</td>
<td>1.71 (1.48 to 1.93)</td>
<td>1.35 (Ref. 26)</td>
<td>4.3 (Ref. 27)</td>
</tr>
<tr>
<td>CL₀f (L/h)</td>
<td>3.07 (2.96 to 3.17)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CL₀dial (L/h)</td>
<td>2.93 (1.51 to 4.35)³</td>
<td>5.06 (Ref. 26)</td>
<td>1.65 (Ref. 27)</td>
</tr>
<tr>
<td>fract₀D (%)</td>
<td>27 (8 to 46)⁴</td>
<td>22 (14 to 31)⁵</td>
<td>24.4 (Ref. 26)</td>
</tr>
<tr>
<td>A₀dial (mg)</td>
<td>91 (12 to 170)</td>
<td>56 (Ref. 27)</td>
<td></td>
</tr>
</tbody>
</table>

³Estimated from the area under the curve (AUC) during EDD and A₀dial.

⁴Estimated from drug concentrations before and after the dialysis membrane.

⁵Estimated from CL₀dial and Vd.

⁶Estimated from the half-lives off and on EDD.

⁷Estimated by AUC on the basis of method 5.

in the dialysate and the adsorbcence of the drug by the dialysis membrane. Methods that use plasma concentrations before and after the dialysis membrane (method 2) provide information on the drug clearance at a given time, but drug clearance can decrease during hemodialysis. In contrast, methods that use only plasma concentrations from the patient (methods 4 and 5) depend on the terminal half-life of the drug. The estimation of
there are differences between estimates, more insight into the pharmacokinetics of a drug is gained by explanation of these differences.

**Moxifloxacin**

Moxifloxacin (molecular weight 437.9 Da) undergoes mainly hepatic metabolism and fecal excretion. Its total clearance is approximately 12 L/h, and its half-life is approximately 12 h in healthy subjects. Only 20% of the drug is excreted unchanged by the kidney (20). Plasma protein binding of moxifloxacin is approximately 54% (21). Renal dysfunction has little effect on the pharmacokinetics of moxifloxacin. In renal failure, the moxifloxacin clearance is reduced by only approximately 20%. Therefore, a dose adjustment is not necessary. However, because moxifloxacin does not only undergo glomerular filtration but also tubular reabsorption, drug clearance by EDD, lacking tubular reabsorption, could be higher compared with normal renal function (22).

In our experiments, one third of moxifloxacin (with regard to the amount of drug present in the body at the beginning of EDD) was removed by one EDD in addition to the nonrenal drug clearance. This is indicated by the difference between the half-lives on and off EDD, the dialysis clearance (method 2), and fraction eliminated by dialysis (methods 4 and 5). In contrast to this finding, only a low amount of moxifloxacin was recovered from the dialysate; consequently, calculations that are based on this amount (methods 1 and 3) lead to low values that underestimate drug removal. Reasons for erroneously low dialysate measurements include adsorption of the drug by the dialyzer membrane and instability of the drug in the dialysate fluid.

Our results suggest that moxifloxacin pharmacokinetics in critically ill patients who have ARF and undergo EDD are similar to those from healthy subjects and patients without renal impairment. These data are in agreement with data that were obtained in critically ill patients who were undergoing continuous venovenous hemodiafiltration, in whom Fuhrmann et al. (23) showed that no dosage adaptation was required. Because moxifloxacin primarily undergoes hepatic metabolism and fecal excretion, severe liver impairment, which was present in six of the 10 patients, could have influenced the pharmacokinetic measurements. Whereas no dosage adjustment is necessary in patients with mild or moderate hepatic impairment, the pharmacokinetics of moxifloxacin in patients with severe hepatic impairment (Child-Pugh class C) has to our knowledge not been studied adequately. On the basis of theoretical reasoning, hepatic impairment should decrease hepatic clearance but also could decrease plasma protein binding of moxifloxacin and thereby increase its dialysance. We did not see, however, a distinct difference in pharmacokinetics between patients with and without severe liver impairment. Hence, in anuric critically ill patients, with and without liver impairment, who are undergoing EDD, we recommend a standard dosage of moxifloxacin (400 mg intravenously) administered once daily after the dialysis.

**Levofloxacin**

Levofloxacin (molecular weight 370 Da), an enantiomer of ofloxacin, is excreted primarily (80 to 86%) unchanged via the kidneys (24). Plasma protein binding of levofloxacin ranges between 24 and 38% (25). Its clearance is approximately 9 L/h, and its half-life is approximately 7 h in healthy subjects. In renal failure, levofloxacin clearance is reduced by approximately 75%, and the half-life is prolonged to 35 h. Therefore, dose adjustments are required in individuals with impaired renal function. Patients who were treated with EDD had a shorter half-life than those who were treated with IHD (26). The half-life during the treatment was similar to the one shown for patients who were on CRRT (27).

In our study, 20 to 30% of levofloxacin was removed by one EDD. This is in agreement with previous estimates in IHD (26). The fractional elimination by the renal replacement therapy itself is comparable to the data that were obtained in IHD (26) but significantly lower than for patients on CRRT (27). We could detect a median of 91 mg of levofloxacin in the total collected dialysate after an 8-h extended dialysis, which is in agreement with the estimated dialysis clearances. Because levofloxacin primarily is excreted renally, liver impairment, which was present in one patient, is unlikely to have influenced the pharmacokinetic parameters. Although a final recommendation of a dosing regime on the basis of our data cannot be provided, a dose adjustment still has to be used, despite using this highly efficient method of renal replacement therapy. With regard to the dialysis clearance, levofloxacin should be administered after EDD.

**Conclusion**

In future studies, further dosing recommendations for patients who have ARF in the ICU and are treated with novel modes of renal replacement therapy should be developed to avoid excess mortality as a result of underdosing of a potentially life-saving drug.

**Acknowledgments**

These results were reported during the “5. Forschungswerkstatt Moxifloxacin” of the BAYER AG; June 24, 2005; Leverkusen, Germany. We thank Dr. U. Thuss (Department of Pharmacokinetics, BAYER AG) for the measurement of moxifloxacin.

**References**

4. Kumar VA, Yeun JY, Depner TA, Don BR: Extended daily


28. Stass HH, Dammer S, Kubitza D, Moeller J, Delesen H, Schaefers R: No Dose Adjustment Is Needed for Patients Undergoing Hemodialysis (HD) Receiving Oral Moxifloxacin [A-1383], presented at the 42nd ICAAC meeting of the American Society for Microbiology; September 27–30, 2002; San Diego, CA