
Special Feature

Volume Progression in Autosomal Dominant Polycystic
Kidney Disease: The Major Factor Determining Clinical
Outcomes

Jared J. Grantham,* Arlene B. Chapman,† and Vicente E. Torres‡

*Kansas University Medical Center, Kansas City, Kansas; †Emory University, Atlanta, Georgia; and ‡Mayo Clinic
College of Medicine, Rochester, Minnesota

Autosomal dominant polycystic kidney disease (PKD) is a hereditary condition characterized by the progressive enlargement
of innumerable renal cysts that contribute to life-altering morbidity early in the course of the disease. Evidence indicates that
the rate of increase in kidney volume can be reliably measured by magnetic resonance or computed tomography imaging, thus
providing objective means to judge the effectiveness of therapies that are targeted to the aberrant growth of renal tubules. It
is now possible, therefore, to monitor the effectiveness of potential therapies on the signature abnormality in autosomal
dominant PKD before irreversible damage has been done by the cysts. Evidence accumulated from human cross-sectional and
longitudinal studies and longitudinal studies of PKD models in animals provide strong support for the view that reducing the
rate of kidney volume enlargement will ameliorate the late-stage development of renal insufficiency.
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I n this review, we propose a new paradigm for the evalu-
ation of progression early in the course of chronic renal
diseases that lead to renal insufficiency. In current prac-

tice, GFR is considered the gold standard for quantifying the
rate of progression in all renal disorders. However, owing to
the remarkable degree to which intact nephrons can compen-
sate for the loss of functioning parenchyma, GFR measure-
ments fail to disclose ominous changes in tissue function in the
early stages of many diseases. Here, we make a case that
sequential measurements of renal volume quantify the rate of
disease progression before changes in GFR can be detected in
autosomal dominant polycystic kidney disease (ADPKD). We
think that this new paradigm for PKD, a chronic progressive
disorder, complements a recent recommendation by a distin-
guished panel of nephrologists that measures should be taken
to diagnose acute kidney injury before the rise in serum creat-
inine heralds severe renal dysfunction (1).

Etiology and Pathogenesis of PKD
PKD1 and PKD2 are expressed in most organs and tissues of the

human body. The proteins that are encoded by PKD1 and PKD2,
polycystin1 and polycystin2, seem to function together to regulate the
morphologic configuration of epithelial cells (2). The polycystins are
expressed in development as early as the blastocyst stage and are
expressed in a broad array of terminally differentiated tissues.

The functions of the polycystins have been scrutinized to the
greatest extent in epithelial tissues of the kidneys and liver and

in vascular smooth muscle. Mutations in either polycystin lead
to a clinical phenotype recognized as ADPKD. The hallmarks of
this inherited condition are massively enlarged kidneys caused
by the sustained expansion of innumerable fluid-filled cysts
ranging in equivalent size from a pea to a grapefruit. Cysts
derive from microscopic tubule precursors. They are seen with
lesser frequency in the liver (approximately 80%), pancreas
(approximately 10%), and arachnoid membranes (approxi-
mately 8%). Aneurysms occur in approximately 5% of patients
with ADPKD and with higher frequency in those with a family
history of aneurysm (approximately 20%). In �60% of patients,
hypertension develops before the loss of renal function, and the
average age of onset, although highly variable, is approxi-
mately 30 yr (3–8). Proteinuria, often used as a surrogate
marker of disease activity in other kidney disorders, is usually
�1 g/d. Proteinuria, observed more frequently in those with
large (mean combined renal volume 1190 ml) rather than small
(578 ml) renal volumes, is also associated with a greater likeli-
hood of a subsequent loss of renal function (9).

The renal cysts develop in a tiny fraction of the nephrons
(estimated to be much less than 1%) (10). In ADPKD, each
epithelial cell within a renal tubule harbors a germ-line muta-
tion, yet only a tiny fraction of the tubules develop renal cysts.
It is currently held that the cells are protected by the allele
inherited from the parent without ADPKD. When this allele is
inactivated by a somatic event (mutation or otherwise) within a
solitary renal tubule cell, the cell divides repeatedly until a cyst
develops, with an aberrant growth program causing endless
expansion. The severity of ADPKD is thought to be a direct
consequence of the number of times and the frequency with
which this cystogenic process occurs within the kidneys over
the life of the patient.
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Hyperplasia of renal cyst epithelial cells is unquestioned in
this disease; however, the rate of cell proliferation is slow in
comparison with transformed and malignant neoplastic cells
(11). The hyperplastic cells cause an out-pocketing of the tubule
wall, with the formation of a saccular cyst that fills with fluid
derived from glomerular filtrate that enters from the afferent
tubule segment. Progressive expansion eventually causes most
of the emerging cysts to separate from the parent tubule, leav-
ing an isolated sac that fills with fluid by transepithelial secre-
tion. This isolated cyst expands relentlessly as a result of con-
tinued proliferation of the mural epithelium together with the
transepithelial secretion of NaCl and water into the lumen (12).

The expanding fluid-filled tumor masses elicit secondary and
tertiary changes within the renal interstitium evinced by thick-
ening and lamination of the tubule basement membranes, in-
filtration of macrophages, and neovascularization (13–15). Fi-
brosis within the interstitium begins early in the course of the
disease. Cellular proliferation and fluid secretion may be accel-
erated by cAMP and growth factors such as EGF (3,12,16,17). In
summary, cysts function as autonomous structures and are
responsible for progressive kidney enlargement in ADPKD.

Morbidity in ADPKD
Renal Hemorrhage and Hematuria

Polycystic kidneys are unusually susceptible to traumatic
injury, with hemorrhage occurring in approximately 60% of
individuals (4,5,16–28). Mild trauma can lead to intrarenal
hemorrhage or bleeding into the retroperitoneal space accom-
panied by intense pain that often requires narcotics for relief
(29). The cysts are associated with excessive angiogenesis
evinced by fragile vessels stretched across their distended
walls. When traumatized, these vessels may leak blood into the
cyst, causing it to expand rapidly, provoking frightening pain.
If bleeding continues, then the cyst may rupture into the col-

lecting system, causing gross hematuria. Alternatively, it may
rupture into the subcapsular compartment and eventually dis-
sect through the renal capsule to fill the retroperitoneal space.
In massive bleeding, the blood may reach the skin that covers
the flank and abdomen, where it is recognized as subcutaneous
ecchymoses (Gray-Turner sign).

Evidence from computed tomography scans indicates that
intracyst hemorrhage, manifested as “hyperdense” subcapsular
cysts, occurs in �90% of those with ADPKD (30). Often, dozens
of superficial cysts bear the marks of intracyst bleeding. Direct
inspection of the “hyperdense” cysts has revealed them to be
filled with cellular debris derived from the breakdown of blood
products.

Patients with a history of renal hemorrhage evinced by re-
peated episodes of gross hematuria have the largest kidneys
(Table 1) (4,18) and progress to renal insufficiency faster than
those without this history. In a retrospective clinical study,
Gabow et al. (4,18) found that male athletes who had ADPKD
and participated in contact sports had more hematuric episodes
and developed renal insufficiency sooner than those who did
not participate. In summary, renal hemorrhage caused by cysts
occurs at any age and diminishes the quality of life. Hemor-
rhage is associated with larger kidneys and accelerated loss of
renal function.

Pain
Pain with or without hemorrhage is the most frequent symp-

tom (approximately 60%) reported by adult patients with
ADPKD (31–42) and frequently begins in individuals with
normal renal function (19). Pain (often reported as either diffuse
abdominal or bilateral flank pain) is also the most frequent
symptom (�35%) reported by children with ADPKD and is
associated with increased renal size as determined by ultra-
sound measurements (43–46). Although pain is commonly re-

Table 1. Relation between kidney volume and variables

Variable Number
Studied

Volume
Method

Mean Kidney Volumea

With
variable

Without
variable

P
Value Reference

Proteinuria 270 US 1190 � 93 578 � 32 �0.0001 8
Microalbuminuria 49 US 853 � 87 535 � 52 �0.01 8
Hypertension US 5

males 76 624 � 47 390 � 43 �0.0005
females 89 446 � 32 338 � 24 �0.002

Hypertension 43 CT 976 � 472 739 � 311 �0.05 84
241 MR 628 � 48 352 � 33 �0.0001 80

Hypertension children 62 US 2.7 � 2.3b 1.2 � 2.5b �0.05 85
Hypertension children 70 US 125 � 7 83 � 6 �0.0001 42, 43
Gross hematuria 191 US 820 � 87 588 � 52 �0.03 3
Progressive loss of renal function 43 CT 895c 606c 84

220 US 598 � 368 366 � 168 �0.0001 77
aMean kidney volume is combined kidney volume � 2.
bKidney volume corrected for body size.
cDerived from combined kidney volume data.
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ported in children with ADPKD, it is usually not accompanied
by gross hematuria. In older individuals, pain may be clearly
associated with renal hemorrhage, the passage of stones (stones
are more common in patients with ADPKD [47–52]), infected
cysts, and pyelonephritis (52–65). The occurrence of pain, he-
maturia, and nephrolithiasis has also been found to correlate
with the degree of kidney enlargement (6,18,66).

When one or more cysts can be identified as causing the pain,
the symptoms can often be abated by open or fiber optic guided
surgery to excise the outer walls and drain them
(31,32,35,36,38–42,58,67–73). This type of surgery establishes an
unmistakable relation between the presence of the cyst and the
pain perceived by the patient.

In approximately one half of patients, however, candidate
cysts cannot be identified as directly causing the pain. In these
cases, indiscriminate excision of dozens of cyst walls that abut
the capsule have produced complete symptomatic relief for
many months or years (36,40,74). Volumetric reduction of these
kidneys usually exceeds 50% but still leaves kidneys larger than
normal size. Not every cyst can be removed, and, with time, the
residual cysts enlarge and symptoms may reappear.

Approximately one quarter of the patients with the most
severe pain do not gain relief from surgery or pharmacologic
therapy with narcotics. These individuals usually have inacces-
sible cysts in the medullary portions of the kidneys. Nephrec-
tomy is used as a last resort to control the pain in these unfor-
tunate patients. In summary, pain that adversely affects the
quality of life at any age is caused by renal cysts and is asso-
ciated with increased renal size.

Cosmetic Deformation of the Abdomen
The kidneys in some patients enlarge to such an extent that

belt and dress sizes must be increased substantially. The addi-
tional mass within the abdomen affects posture during stand-
ing and walking, which contribute to lower back pain that is
separate from the renal pain. Although the effect of cosmetic
abdominal distortion on lifestyle and quality of life has not
been studied formally, nephrologists who treat large numbers
of patients with ADPKD report that many of them find the
enlarging abdomen highly stressful. Huge kidneys may impair
diaphragmatic motion enough to disturb sleep.

Enlarged kidneys as a result of cysts increase the risk that
seat belts may cause injury (75). Patients with greatly enlarged
polycystic kidneys complain that seat belts increase pain in
normal use. In summary, cosmetic deformation of the abdomen
at any age is caused by renal cysts and can adversely affect the
quality of life.

Hypertension
Hypertension has been associated with renal size in several

studies of ADPKD (Table 1) (2–6,28,54,76–85). In children who
were aged 3 to 19 and had ADPKD and normal renal function,
the number and volume of renal cysts determined with ultra-
sound were greatest in those with hypertension (Table 1)
(43,54,76,79,86–88). In 165 adult patients with ADPKD, renal
volumes determined with ultrasound were significantly greater
in those with hypertension than in normotensive patients (6).

Similarly, in a recent cross-sectional study of 241 patients with
ADPKD using magnetic resonance imaging (MRI), mean kid-
ney volume was greater in the hypertensive patients than in the
normotensive group (81). Surgical removal of cysts in a large
Chinese study of ADPKD patients improved BP control (89,90).
In summary, the development of hypertension is associated
with the enlargement of ADPKD kidneys secondary to cysts.
As explained in these early sections, expanding renal cysts and
the vastly enlarged kidneys that they cause provoke serious
morbidities that damage the quality of life long before renal
function is diminished.

Renal Insufficiency
The development of renal insufficiency is highly variable in

ADPKD (5,22–25,27,66,91). Renal failure has been reported in
children (92), and, conversely, individuals with the condition
may live a normal life expectancy without knowing that they
have the disease. An early study estimated that approximately
70% of patients with ADPKD would develop renal insuffi-
ciency if they survived to age 65 (93). A 1984 report from
Canada found that the probability of being alive and not having
renal failure was 77% by age 50, 57% by age 58, and 52% by age
73 (94). Genotyping now has changed the way renal function
prognosis is judged. Individuals with mutations in PKD2 de-
velop renal failure approximately 15 yr later than those with
PKD1 mutations (5,18,66,94–97). However, on clinical inspec-
tion, an individual with a PKD2 mutation does not seem phys-
ically different from someone with a PKD1 mutation.

In studies of large families, no individual who bears a mu-
tated PKD1 or PKD2 gene has failed to have renal cysts. Al-
though all patients who inherit PKD1 or PKD2 develop renal
cysts, not all of them will progress to renal insufficiency that
requires dialysis and/or renal transplantation.

In his classic thesis on PKD, Dalgaard (21) presented strong
evidence supporting the view that renal cysts caused renal
insufficiency. He collected data on 346 individuals in Denmark.
Dalgaard recorded the number of patients who developed pain,
uremia (determined by measurement of serum creatinine level,
symptoms, or death), and palpable kidneys (a surrogate for
renal size). In adults, normal kidneys cannot be palpated with
certainty. In Dalgaard’s study, strict criteria were used to de-
clare the kidneys palpable, and, in many cases, the physical
examination was confirmed by intravenous urography or ret-
rograde pyelography. He found that palpable kidneys and pain
appeared before the onset of uremia in relatively young indi-
viduals, a precedence that was maintained to age 70. Dalgaard
concluded that the increase in renal size as a result of the cysts
antedated the loss of function.

Many studies, before Dalgaard and after, have found an
inverse association between the size of polycystic kidneys and
the level of glomerular filtration. Thomsen et al. (85) were the
first to use radiologic imaging in a cross-sectional study to
determine renal volume in patients with ADPKD and normal
or abnormal renal function (Table 1). They found a clear asso-
ciation between total renal volume and a decline in creatinine
clearance. Franz and Reubi (91) determined GFR and renal
plasma flow in individuals relatively late in the course of PKD.
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There was a wide variation in the age at which individuals
developed the well-known downward fall of GFR that occurred
after the kidneys had become markedly enlarged. These re-
searchers also developed a model that, when fit with reason-
able estimates of the rate at which renal volume (cysts) ex-
panded in the patients, mimicked the curvilinear relation
between GFR and patient age that is typical of the disease as it
approaches terminal renal failure.

Fick-Brosnahan et al. (80) performed a longitudinal prospec-
tive study in 229 adult patients with PKD to determine the
relation between kidney volume (determined by ultrasound)
and GFR. Ultrasound is relatively inaccurate for determining
small changes in kidney volume changes over relatively short
intervals of time. In this study, however, measurement inter-
vals averaged 7.8 yr in duration, and the changes in kidney
volume were relatively large. Multiple linear regression analy-
sis showed a significant inverse relationship between the rate of
renal volume increase and the rate of decline in GFR. There was
also a highly significant inverse correlation between absolute
kidney volume and GFR. Linear regression analysis also re-
vealed a significant inverse relationship between the rate of
renal volume increase and the rate of decline in GFR. This study
provided strong support for the view that renal cyst expansion
is the forerunner of the decline in GFR observed in patients
with ADPKD.

MRI has also been used to determine renal volumes in a
cross-sectional study of a relatively large cohort of patients with
ADPKD (28). In this study, renal volume was evaluated in
relation to the level of renal function (Figure 1). GFR decreased
in association with increasing combined renal volumes at a
somewhat faster rate in women than in men for reasons that are
not clear. A fall in GFR to �80 ml/min per 1.73 m2, a mean level
considered to be the lower limit of “normal” GFR, occurred at

approximately 670 ml in women and approximately 1100 ml in
men. These findings suggest that early in the course of the
disease, structure–function differences are most apparent be-
tween women and men, diminishing in older patients.

Computed tomography with contrast enhancement has been
used to determine the longitudinal relation between kidney
volume and function in a prospective (nine individuals) (98)
and a retrospective study (10 individuals) (99) of ADPKD. The
data from these studies have been combined and updated to
examine the long-term outcomes of the individual patients.
Figure 2 shows the relation between kidney volume and age.
Two measurements of volume were made (3.3 to 11.9 yr apart).
It is plain to see that the renal volumes segregated into two
general categories: Those with relatively rapid increases in
volume and those in whom renal volume increased more
slowly. Serum creatinine levels were determined over an aver-
age duration of 17.4 yr (range 13 to 27 yr). Ten patients (Figure
2, open symbols) developed renal insufficiency marked by
ESRD (n � 6) or a serum creatinine level �1.4 mg/dl (n � 4;
mean creatinine 3.2 mg/dl). Nine patients (closed symbols)
maintained serum creatinine levels within the normal range
(mean serum creatinine 1.2 mg/dl; range 1.0 to 1.4 in 2004). The
final kidney volume of the azotemic group was 2253 � 287 (SE)
and 1003 � 148 ml (SE) in the nonazotemic group. The change
in kidney volume was 123.2 � 25.5 (SE) and 29.0 � 9.6 ml/yr
(SE) in the azotemic and nonazotemic groups over periods of
6.3 and 6.9 yr, respectively. It seems apparent from these mea-
surements that the patients who developed azotemia had larger
kidneys that expanded at faster rates than those who remained
nonazotemic over the period of observation.

Animal models of progressive renal cystic disease emphasize
further the importance that cysts play in provoking impairment
of renal function. The rates of renal enlargement and renal

Figure 1. Cross-section magnetic resonance (MR) study relating combined volumes of left and right kidneys and GFR. Mean and
95% confidence limits for males and females shown.
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function decline are faster in rodent models of PKD than in
humans. As in human ADPKD, kidney enlargement in these
animal models consistently precedes the development of renal
insufficiency. Table 2 summarizes the results of studies in
which measurements of renal volume and function were made
in control animals and animals that were treated with several
different regimens. Treatments were usually started just after
the animals were weaned and maintained for several weeks.

Improvements in renal volume and function were evaluated by
comparing the kidney weights and functional parameters of
treated and untreated cystic animals to wild-type counterparts
that served as age and sex-matched controls. Treatments that
inhibited renal enlargement consistently reduced the rate of
renal function decline (100–111) (Figure 3). The changes in
kidney volume caused by the different treatments correlated
reasonably well with the changes in renal function, although in

Figure 2. Time-dependent increases in combined left and right kidney volumes determined by computed tomography.

Table 2. Relative beneficial effect of various interventions on kidney volume and function in polycystic kidney
disease

%
Improved

KW

%
Improved

BUN
Model Duration Reference

Soy versus casein protein 27.4 70a Han:SPRD, M 3 to 10 w Aukema; Kidney Int 59: 52, 2001
Enalapril, 50 mg/L po 22.8 43.9a Han:SPRD, M 3 to 16 w Keith; Am J Kidney Dis 24: 491, 1994
Enalapril, 50 mg/L po 31.0 74.2a Han:SPRD, M 3 to 10 w Kennefick; Kidney Int 56: 2181, 1999
Enalapril, 50 mg/L po 32.7 48.1b Han:SPRD, M 3 to 40 w Kennefick; Kidney Int 56: 2181, 1999
Losartan, 400 mg/L po 12.3 63.4a Han:SPRD, M 3 to 16 w Keith; Am J Kidney Dis 24: 491, 1994
Lovastatin, 4 mg/Kg per day ip 21.7 58.8 Han:SPRD, M 4 to 10 w Gile; Am J Kidney Dis 26: 501, 1995
Methylprednisolone, 1–2 mg/Kg per d po 65.7 74.0 pcy 4 to 18 w Gattone; Am J Kidney Dis 25: 302, 1995
Methylprednisolone, 1–2 mg/Kg per d po 33.1 40.1 Han:SPRD, M 3 to 10 w Gattone; Am J Kidney Dis 25: 302, 1995
WTACE2, 100 mg/kg per d ip 46.7 54.8 bpk 7 to 21 d Dell; Kidney Int 60: 1240, 2001
EKI-785, 90 mg/Kg q3d ip 66.7 100.0 bpk 7 to 24 d Sweeney; Kidney Int 57: 33, 2000
EKI-785, 90 mg/Kg q3d ip 85.5 100.0 bpk 7 to 21 d Sweeney; Kidney Int 64: 1310, 2003
EKI-785, 90 mg/Kg q3d ip 21.2 41.8 Han:SPRD, M 3 to 10 w Torres; Kidney Int 64: 1573, 2003
EKB-569, 90 mg/Kg q3d ip 75.2 94.8 bpk 7 to 21 d Sweeney; Kidney Int 64: 1310, 2003
EKB-569, 30 mg/Kg q3d �

WTACE2 100 mg/Kg altd ip
74.3 94.8 bpk 7 to 21 d Sweeney; Kidney Int 64: 1310, 2003

EKB-569, 20 mg/Kg q3d ip 38.1 59.5 Han:SPRD, M 3 to 10 w Torres; Kidney Int 64: 1573, 2003
c-myc antisense oligomer, 30 mcg/d ip 36.7 66.0 cpk 21 d Ricker; Kidney Int 61: S125, 2002
Rapamycin, 0.2 mg/Kg per d ip 64.6 84.6 Han:SPRD, M 3 to 8 w Tao; J Am Soc Nephrol 16: 46, 2005
OPC-31260, 100–200 mcg per d sq 54.4 86.4 cpk 3 to 21 d Gattone; Develop Genet 24: 309, 1999
OPC-31260, 0.1% po 86.2 62.2 pcy 4 to 30 w Gattone; Nature Med 9: 1323, 2003
OPC-31260, 0.1% po 75.0 95.9 PCK 3 to 10 w Gattone; Nature Med 9: 1323, 2003
OPC-31260, 0.05% po 98.4 99.5 Pkd2-/WS25 3 to 16 w Torres; Nature Med 10: 363, 2004

aData are based on serum creatinine values.
bData are based on inulin clearance.
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two studies (not included in Figure 3), a beneficial effect on
function was seen occasionally without a corresponding change
in kidney volume (112,113). Conversely, in no instance has a
beneficial effect on renal volume been observed without a
corresponding favorable effect on renal function. All things
considered, the animal studies are consistent with the view that
cyst development initiates a series of secondary changes that
culminates in renal insufficiency. In summary, evidence from
cross-sectional and longitudinal studies in human ADPKD and
in animal models of PKD strongly implicate enlarging renal
cysts and the consequent increase in renal size as a major factor
in the development of late-onset renal insufficiency in ADPKD.

Evaluation of Disease Progression in ADPKD
Renal failure is a feared consequence of all progressive renal

disorders. Most of the conditions that lead to renal failure, e.g.,
glomerulonephritis, diabetes, and hypertensive vascular dis-
ease, have primary or secondary effects on the glomeruli that
generate the glomerular filtrate. Consequently, a high level of
emphasis has been placed on the GFR as the prime indicator of
disease progression.

The severity of other chronic diseases that do not originate
within glomeruli, e.g., ADPKD, tubulointerstitial nephritis, con-
genital maldevelopment, and hereditary tubulopathies, is also
judged by their effect on the GFR. Consequently, the develop-
ment of treatments for slowly progressive nonglomerular dis-
orders may be compromised if only GFR is used as a primary
end point, because no organization would be willing to under-
write the costs of a clinical trial that might last 20 to 40 yr to
determine efficacy.

Measurements of GFR can be especially misleading in report-
ing the progression of ADPKD. The cysts develop at birth and,
as noted above, are unquestionably the cause of major morbid-
ities long before renal insufficiency appears. It is widely known
that the kidneys have a remarkable capacity to compensate for
the loss of glomerular filtration units. This is illustrated daily
when donor kidneys are removed from living humans and
transplanted into another person. The remaining kidney com-
mences on the day of surgery to compensate for the loss of the
partner, and within 30 d, GFR values that are close to the values
before nephrectomy are achieved.

In ADPKD, compensation begins with the piecemeal loss of

filtering units owing to the local anatomic distortion cause by
the expanding cysts. There is associated inflammation, scarring,
and apoptosis of normal parenchyma that contributes to the
loss of GFR (114). The cysts develop sporadically about the
kidneys; thus, there are islands of parenchyma that escape
injury for many years. It is in these areas that compensatory
adjustments to the loss of glomerular filters takes place. On
balance, the GFR is maintained within a range indistinguish-
able from normal until the fourth or fifth decade of life, a
process that is illustrated in the hypothetical case in Figure 4.
MRI scans of polycystic kidneys at progressively increased
levels of cystic change are shown at the top. The graph illus-
trates the actual loss of functioning glomeruli (the straight line)
and the compensated level of GFR (the curved line). The
straight line that relates age to GFR was drawn on the assump-
tion that 36,000 glomeruli were destroyed each year beginning
at 10 yr of age. The line above it assumes that each surviving
glomerulus increased single-nephron GFR by up to twofold,
which is reasonable because after loss of a kidney, the GFR of
the remaining organ compensates to within normal.

Eventually, the filtering units that have maintained the nor-
mal level of GFR for 40 yr are lost, and it is at this point that the
GFR begins to fall precipitously. Physicians generally tell pa-
tients with ADPKD at this time that their disease is “progress-
ing more rapidly than before.” This is a common misconception
that does not acknowledge the strong possibility that the cysts
had been forming and expanding and thereby compromising
adjacent functioning nephrons at a relatively slow rate all
along. This example also serves to illustrate a concern of many
clinical scientists in this field that waiting until the serum

Figure 3. Relation between improvement in kidney size and
improvement in renal function in treated animals with poly-
cystic kidney disease.

Figure 4. Hypothethical scheme relating GFR and age. Figure
insets show MR scans of right kidneys at different ages of
disease progression.
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creatinine is clearly increased and GFR decreased before begin-
ning to test potential therapeutic agents may doom such trials
to failure. As shown in Figure 4, when the GFR has clearly
decreased below normal, the MRI images reveal extensive an-
atomic distortion and parenchymal compression. Drugs that
target the formation and growth of cysts would be far less likely
to show efficacy than they would had they been given early in
the course of the disease, because more than one half of the
viable parenchyma would have been destroyed before compen-
sating nephrons started to fail.

Until now, clinical evaluations of potential PKD therapies
have monitored preservation of GFR to indicate efficacy. One
such end point is the time for the serum creatinine concentra-
tion to double. Unfortunately, this end point also ignores that
many renal diseases invoke compensatory glomerular hyper-
filtration relatively early in the course and thereby maintain
overall GFR within a normal range. Consider, for example, two
patients who have PKD, are aged 20 and 40, and have serum
creatinine levels of 1 mg/dl. Both are destined to double the
serum creatinine levels by age 50. For the 20-yr-old patient with
PKD, the doubling time would be 30 yr; that of the 40-yr-old
patient would be 10 yr. Consequently, it would be impractica-
ble to include relatively young patients with well-preserved
renal function in a study lasting �30 yr, forcing studies of
shorter duration that would, of necessity, include only those
with very advanced disease.

The creatinine-doubling end point forces researchers to select
for studies individuals whose GFR have decreased appreciably,
i.e., an age- and gender-adjusted serum creatinine level greater
than approximately 1.4 and 1.6 mg/ml for women and men,
respectively. Consequently, only individuals in whom the func-
tioning renal parenchyma has been reduced to �50% of normal
could be enrolled. In patients with PKD, at this juncture, the
parenchyma is hideously distorted and fibrotic (Figure 4). It
would be extremely difficult for therapies that are targeted to
fundamental causative mechanisms to show efficacy. In sum-
mary, measures of GFR are too insensitive and require too
lengthy a period of follow-up to be used to determine the
potential benefits of therapeutic agents that are targeted to the
prevention of cyst enlargement.

How Can Progression be Monitored and
Quantified in ADPKD?

It stands to reason that the rate of increase in renal volume is
a hard measure of the rate of disease progression in ADPKD.
Clinicians have known for many years that they should look for
a confounding disorder when an patient with ADPKD devel-
ops renal insufficiency in the absence of marked renal enlarge-
ment. Recently, noninvasive radiologic methods have been de-
veloped to monitor the rates of renal cyst and volume
enlargement (98,99). Morphometric analysis of sequential com-
puted tomographs were shown to be sufficiently accurate to
monitor rates of renal enlargement in ADPKD, and MRI-based
methods have been developed (28,81,115).

Patients fall into two general groups of kidney volume in-
crease as shown in Figure 2: (1) Those with rapid rates of
progression (�5% increase in total kidney volume per year)

and (2) those with rates of progression �5% per year. The
encouraging news is that intervals between measurements as
short as 6 mo may be adequate to determine an effect of
treatment that reduces the rate of volume progression �50% in
those with rapidly progressive disease (116). Newer technology
using MRI with gadolinium enhancement avoids ionizing ra-
diation and provides reproducible determinations of cystic vol-
umes (115). Initial preliminary reports from the Consortium for
Renal Imaging Studies in Polycystic Kidney Disease indicate
that MRI is as least as accurate as computed tomography for
determining rates of increase in kidney volume (81).
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