Skip to main content

Main menu

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • Podcasts
    • Subject Collections
    • Archives
    • Kidney Week Abstracts
    • Saved Searches
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Trainees
    • Peer Review Program
    • Prize Competition
  • About CJASN
    • About CJASN
    • Editorial Team
    • CJASN Impact
    • CJASN Recognitions
  • More
    • Alerts
    • Advertising
    • Feedback
    • Reprint Information
    • Subscriptions
  • ASN Kidney News
  • Other
    • ASN Publications
    • JASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Society of Nephrology
  • Other
    • ASN Publications
    • JASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Advertisement
American Society of Nephrology

Advanced Search

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • Podcasts
    • Subject Collections
    • Archives
    • Kidney Week Abstracts
    • Saved Searches
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Trainees
    • Peer Review Program
    • Prize Competition
  • About CJASN
    • About CJASN
    • Editorial Team
    • CJASN Impact
    • CJASN Recognitions
  • More
    • Alerts
    • Advertising
    • Feedback
    • Reprint Information
    • Subscriptions
  • ASN Kidney News
  • Visit ASN on Facebook
  • Follow CJASN on Twitter
  • CJASN RSS
  • Community Forum
Editorials
You have accessRestricted Access

Cocoa Flavanols: A Magic Potion for Protecting the Endothelium in Kidney Failure?

Carmine Zoccali and Francesca Mallamaci
CJASN January 2016, 11 (1) 9-11; DOI: https://doi.org/10.2215/CJN.12141115
Carmine Zoccali
*National Research Council of Italy, Institute of Clinical Physiology, Clinical Epidemiology and Physiopathology of Renal Disease and Hypertension, Ospedali Riuniti Reggio Calabria, Italy; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francesca Mallamaci
*National Research Council of Italy, Institute of Clinical Physiology, Clinical Epidemiology and Physiopathology of Renal Disease and Hypertension, Ospedali Riuniti Reggio Calabria, Italy; and
†Nephrology, Hypertension and Renal Transplantation Unit, Ospedali Riuniti, Reggio Calabria, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data Supps
  • Info & Metrics
  • View PDF
Loading
  • flavanols
  • flavonoids
  • ESRD
  • flow mediated vasodilatation
  • endothelial dysfunction
  • cardiovascular risk
  • cacao
  • endothelium
  • polyphenols
  • renal insufficiency

ESRD is a most vexing condition for the cardiovascular (CV) system. The risk for CV death in this population (43 per 1000 person-years) is nine times higher than that observed in the general population (1), and no meaningful improvement in CV prognosis has been registered during the last 20 years in this population. All major pharmacologic trials testing statins, erythropoiesis-stimulating agents, and agonists of the calcium receptor failed to improve CV outcomes in ESRD (2). Thus, testing new CV interventions in ESRD remains a real public health priority.

The list of CV risk factors in patients with ESRD on dialysis is long and includes traditional risk factors and risk factors peculiar to this condition (3). Among these, disturbed nitric oxide (NO) metabolism is considered as a crucial one. Mainly because of the accumulation of endogenous inhibitors of NO synthase (4) and limitations in substrate (l-Arginine) availability (5), NO generation in this population is markedly reduced (6). Low NO bioavailability in ESRD is implicated in endothelial dysfunction, atherosclerosis, cardiomyopathy, and a variety of disturbances encompassing immune system dysregulation, inflammation, and various neuroendocrine changes (7). Given the multifaceted role of low NO bioavailability in the complex alterations of ESRD, interventions aimed at restoring NO synthesis may reverse processes of fundamental relevance for the high CV and non-CV risk in this condition (1).

Flavonoids are polyphenolic compounds contained in fruits and vegetables, and their average dietary intake ranges from 200 to 400 mg/d. These polyphenols share a C6-C3-C6 structure (i.e., two aromatic rings [A and B] joined by a three-carbon bond configuring oxygenated heterocycle compounds). At least six flavonoids subclasses have been identified (flavanols, flavones, flavan-3-ols, flavanones, anthocyanins, and isoflavones), which show differences in oxidation state and chemical groups in the C ring and the connection of this ring with the B ring (8). Metabolic processing of these compounds further increases their structural complexity with the addition of methoxy groups, glucoronids, sulfates, phenolic hydroxyls, and O-sugars groups, and the list of flavonoids includes >5000 compounds (8). Within the flavanols subclass, compounds like procyanides, catechin, and epicatechin are considered as food constituents with proven beneficial effects on the endothelium by the European Food Safety Authority (9). In vitro and in vivo studies as well as cohort studies (10) suggest that high intake of at least some flavonoids may be associated with a reduced risk for coronary heart disease and stroke. The effects of these polyphenols on vascular health depend on various mechanisms (Figure 1). Some of these are linked to their antioxidant effect, including reaction with superoxide and reactive oxygen species (11) and inhibition of major enzymes impinging on reactive oxygen species generation (nicotinamide adenine dinucleotide phosphate oxidase, xanthine oxidase, and lipoxygenase) (12). In addition, flavonoids directly increase endothelial nitric oxide synthase expression and activity (13) and inhibit angiotensin converting enzyme (ACE) activity (14), a mechanism that may serve to further increase NO bioactivity. Enhancement of prostacyclin and endothelium–derived hyperpolarizing factor synthesis are additional relevant mechanisms, and these compounds may impinge on endothelium-dependent vasodilation (13). Of note, flavonoids interact with lipids in biologic membranes and by this mechanism, may affect the activity of membrane-bound enzymes, ligand-receptor links, and signal transduction to the cell (15). Cocoa flavanols, in particular, possess clear–cut biologic activity on the vascular system. In a double–blind, randomized trial in overweight and obese subjects, a beverage containing about 900 mg flavanols substantially increased endothelium–dependent flow–mediated dilation (FMD), the proportional increase in FMD induced by flavanols being highly significant and biologically relevant (38%) (16). Three additional randomized trials in patients with cardiac ischemia nicely confirmed the effectiveness of these compounds on endothelium-dependent FMD (17–19).

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Mechanisms whereby flavonoids may favorably affect nitric oxide (NO) bioavailability and endothelium–dependent flow–mediated vasodilation. These mechanisms are described in more detail in the text. ACE, angiotensin converting enzyme; eNOS, endothelial nitric oxide synthase; NDPH, nicotinamide adenine dinucleotide phosphate.

In clinical research, the randomized trial on the basis of clinical end points is the unquestionable definitive proof of the efficacy of interventions on human diseases. In this respect, it should be noted that increasing the dietary intake of flavonoids or using flavonoids supplements is well tolerated, but the safety of consumption of large amounts of concentrated supplements of these polyphenols should not be taken for granted (20).

Although the evidence that flavonoids exert favorable effects on the CV system in studies on the basis of surrogates like FMD (16–19) or pulse wave velocity (21) and may lower BP in human hypertension (20) seems robust and credible, until now, there has not been a large trial on the basis of clinical end points showing a benefit by these compounds. Thus, although likely, the therapeutic benefit of flavonoids for the prevention and treatment of CV disease remains an open question.

Testing flavonoids-based interventions in kidney failure is of utmost interest. The effectiveness of flavonoids for reversing endothelial dysfunction, the very basis of atherosclerosis, makes these compounds a potential treatment for curbing the CV risk excess of this condition. In this issue of the Clinical Journal of the American Society of Nephrology, Rassaf et al. (19) report a randomized, double–blinded, placebo–controlled trial aimed at specifically confirming in the dialysis population the hypothesis that flavanols may help to restore FMD in these patients. Rassaf et al. (19) tested the acute effect of cocoa flavanols at baseline and during chronic treatment and examined whether these compounds may mitigate the negative effect of hemodialysis on FMD. The flavanols beverage was safe and improved FMD by 53% in the acute setting without modifying BP. During the chronic study (30 days), FMD rose by 18% in the active arm but remained totally unmodified in the placebo arm, and such a favorable effect was accompanied by a 4-mmHg reduction in diastolic BP, which was significant versus placebo. By the same token, cocoa flavanols mitigated the negative effect of dialysis on FMD, and such an effect persisted over time.

This trial seems well done from design to results (19). Findings in this study suggest that endothelial dysfunction and perhaps, atherosclerosis should not be considered as unmodifiable alterations in patients with CKD. Patients with heart failure were excluded from the trial, but a beneficial effect in these patients seems likely. Indeed, in an experimental model of chronic heart failure, ACE inhibition normalized NO–dependent dilation and suppressed vasoconstrictor prostanoids, thereby improving FMD, a phenomenon that might contribute to the beneficial effects of ACE inhibition in this condition (22). Findings in the study by Rassaf and coworkers (18) have a high internal coherence, because cocoa flavanols increased the FMD response to forearm ischemia in both the acute and chronic settings and because the same intervention mitigated the negative effect of hemodialysis on endothelium-dependent vasodilation.

Some caveats remain. FMD is considered a robust surrogate biomarker, because pharmacologic and nonpharmacologic interventions produce a parallel improvement in FMD and CV outcomes in individuals in the general population and patients with CV disease (23). However, findings in these populations do not necessarily imply that FMD is also a valid surrogate in patients with ESRD. Although flow debt repayment has been associated with mortality in a study in patients on dialysis on the basis of just 24 deaths (24), FMD—the surrogate applied in the study by Rassaf et al. (19)—has never been specifically linked to death and CV events in the same population. The importance of validation of surrogates in patients with CKD cannot be overemphasized (25). Thus, FMD remains a promising but yet unvalidated surrogate end point in kidney failure. These caveats notwithstanding, the burden of CV disease in patients on dialysis is so devastating that a promising intervention like cocoa flavanols deserves full attention by the nephrology community. If confirmed in other studies on the basis of the same surrogate and then, a trial on the basis of clinical end points, the findings by Rassaf et al. (19) may be a turning point in the fight against CV disease in patients on dialysis. Cocoa flavanols seem to be remarkably beneficial for the endothelium in these patients. Whether this benefit may translate into a real reduction in CV risk in ESRD remains only a reasonable hope. Trials on the basis of clinical end points represent a great opportunity and an ethical obligation for investigators who started this promising research field but also, health agencies and investors who have made possible the breakthrough studies supporting the cardiovasculoprotective efficacy of these compound in a high-risk population, like patients with ESRD.

Disclosures

None.

Footnotes

  • Published online ahead of print. Publication date available at www.cjasn.org.

  • See related article, “Vasculoprotective Effects of Dietary Cocoa Flavanols in Patients on Hemodialysis: A Double–Blind, Randomized, Placebo–Controlled Trial,” on pages 108–118.

  • Copyright © 2016 by the American Society of Nephrology

References

  1. ↵
    1. de Jager DJ,
    2. Grootendorst DC,
    3. Jager KJ,
    4. van Dijk PC,
    5. Tomas LM,
    6. Ansell D,
    7. Collart F,
    8. Finne P,
    9. Heaf JG,
    10. De Meester J,
    11. Wetzels JF,
    12. Rosendaal FR,
    13. Dekker FW
    : Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 302: 1782–1789, 2009
    OpenUrlCrossRefPubMed
  2. ↵
    1. Kramann R,
    2. Floege J,
    3. Ketteler M,
    4. Marx N,
    5. Brandenburg VM
    : Medical options to fight mortality in end-stage renal disease: A review of the literature. Nephrol Dial Transplant 27: 4298–4307, 2012
    OpenUrlCrossRefPubMed
  3. ↵
    1. Zoccali C
    : Traditional and emerging cardiovascular and renal risk factors: An epidemiologic perspective. Kidney Int 70: 26–33, 2006
    OpenUrlCrossRefPubMed
  4. ↵
    1. Zoccali C
    : Asymmetric dimethylarginine (ADMA): A cardiovascular and renal risk factor on the move. J Hypertens 24: 611–619, 2006
    OpenUrlCrossRefPubMed
  5. ↵
    1. Baylis C
    : Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol 294: F1–F9, 2008
    OpenUrlCrossRefPubMed
  6. ↵
    1. Wever R,
    2. Boer P,
    3. Hijmering M,
    4. Stroes E,
    5. Verhaar M,
    6. Kastelein J,
    7. Versluis K,
    8. Lagerwerf F,
    9. van Rijn H,
    10. Koomans H,
    11. Rabelink T
    : Nitric oxide production is reduced in patients with chronic renal failure. Arterioscler Thromb Vasc Biol 19: 1168–1172, 1999
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Kielstein JT,
    2. Zoccali C
    : Asymmetric dimethylarginine: A cardiovascular risk factor and a uremic toxin coming of age? Am J Kidney Dis 46: 186–202, 2005
    OpenUrlCrossRefPubMed
  8. ↵
    1. Bondonno CP,
    2. Croft KD,
    3. Ward N,
    4. Considine MJ,
    5. Hodgson JM
    : Dietary flavonoids and nitrate: Effects on nitric oxide and vascular function. Nutr Rev 73: 216–235, 2015
    OpenUrlCrossRefPubMed
  9. ↵
    1. Agostoni C,
    2. Bresson JL,
    3. Fairweather-Tait S,
    4. Flynn A,
    5. Golly I,
    6. Korhonen H,
    7. Lagiou P,
    8. Løvik M,
    9. Marchelli R,
    10. Martin A,
    11. Moseley B,
    12. Neuhäuser-Berthold M,
    13. Przyrembe H,
    14. Salminen S,
    15. Yolanda Sanz SJJS,
    16. Strobel S,
    17. Inge Tetens DT,
    18. Loveren Hv V
    : Scientific opinion on the substantiation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J 10: 1–21, 2012
    OpenUrl
  10. ↵
    1. Peterson JJ,
    2. Dwyer JT,
    3. Jacques PF,
    4. McCullough ML
    : Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr Rev 70: 491–508, 2012
    OpenUrlCrossRefPubMed
  11. ↵
    1. Gryglewski RJ,
    2. Korbut R,
    3. Robak J,
    4. Swies J
    : On the mechanism of antithrombotic action of flavonoids. Biochem Pharmacol 36: 317–322, 1987
    OpenUrlCrossRefPubMed
  12. ↵
    1. Mladenka P,
    2. Zatloukalová L,
    3. Filipský T,
    4. Hrdina R
    : Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radic Biol Med 49: 963–975, 2010
    OpenUrlCrossRefPubMed
  13. ↵
    1. Stoclet J-C,
    2. Chataigneau T,
    3. Ndiaye M,
    4. Oak M-H,
    5. El Bedoui J,
    6. Chataigneau M,
    7. Schini-Kerth VB
    : Vascular protection by dietary polyphenols. Eur J Pharmacol 500: 299–313, 2004
    OpenUrlCrossRefPubMed
  14. ↵
    1. Actis-Goretta L,
    2. Ottaviani JI,
    3. Fraga CG
    : Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J Agric Food Chem 54: 229–234, 2006
    OpenUrlCrossRefPubMed
  15. ↵
    1. Fraga CG,
    2. Galleano M,
    3. Verstraeten SV,
    4. Oteiza PI
    : Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med 31: 435–445, 2010
    OpenUrlCrossRefPubMed
  16. ↵
    1. Davison K,
    2. Coates AM,
    3. Buckley JD,
    4. Howe PRC
    : Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjects. Int J Obes 32: 1289–1296, 2008
    OpenUrlCrossRefPubMed
  17. ↵
    1. Farouque HMO,
    2. Leung M,
    3. Hope SA,
    4. Baldi M,
    5. Schechter C,
    6. Cameron JD,
    7. Meredith IT
    : Acute and chronic effects of flavanol-rich cocoa on vascular function in subjects with coronary artery disease: A randomized double-blind placebo-controlled study. Clin Sci (Lond) 111: 71–80, 2006
    OpenUrlCrossRefPubMed
  18. ↵
    1. Balzer J,
    2. Rassaf T,
    3. Heiss C,
    4. Kleinbongard P,
    5. Lauer T,
    6. Merx M,
    7. Heussen N,
    8. Gross HB,
    9. Keen CL,
    10. Schroeter H,
    11. Kelm M
    : Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial. J Am Coll Cardiol 51: 2141–2149, 2008
    OpenUrlCrossRefPubMed
  19. ↵
    1. Rassaf T,
    2. Rammos C,
    3. Hendgen-Cotta UB,
    4. Heiss C,
    5. Kleophas W,
    6. Dellanna F,
    7. Floege J,
    8. Hetzel GR,
    9. Kelm M
    : Vasculoprotective effects of dietary cocoa flavanols in hemodialysis patients: A double-blind, randomized, placebo-controlled trial. Clin J Am Soc Nephrol 11: 108–118, 2016
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Clark JL,
    2. Zahradka P,
    3. Taylor CG
    : Efficacy of flavonoids in the management of high blood pressure. Nutr Rev 73: 799–822, 2015
    OpenUrlCrossRefPubMed
  21. ↵
    1. Lilamand M,
    2. Kelaiditi E,
    3. Guyonnet S,
    4. Antonelli Incalzi R,
    5. Raynaud-Simon A,
    6. Vellas B,
    7. Cesari M
    : Flavonoids and arterial stiffness: Promising perspectives. Nutr Metab Cardiovasc Dis 24: 698–704, 2014
    OpenUrlCrossRefPubMed
  22. ↵
    1. Varin R,
    2. Mulder P,
    3. Tamion F,
    4. Richard V,
    5. Henry JP,
    6. Lallemand F,
    7. Lerebours G,
    8. Thuillez C
    : Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure: Role of nitric oxide, prostanoids, oxidant stress, and bradykinin. Circulation 102: 351–356, 2000
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Flammer AJ,
    2. Anderson T,
    3. Celermajer DS,
    4. Creager MA,
    5. Deanfield J,
    6. Ganz P,
    7. Hamburg NM,
    8. Lüscher TF,
    9. Shechter M,
    10. Taddei S,
    11. Vita JA,
    12. Lerman A
    : The assessment of endothelial function: From research into clinical practice. Circulation 126: 753–767, 2012
    OpenUrlFREE Full Text
  24. ↵
    1. London GM,
    2. Pannier B,
    3. Agharazii M,
    4. Guerin AP,
    5. Verbeke FHM,
    6. Marchais SJ
    : Forearm reactive hyperemia and mortality in end-stage renal disease. Kidney Int 65: 700–704, 2004
    OpenUrlCrossRefPubMed
  25. ↵
    1. Zoccali C,
    2. Bolignano D,
    3. D’Arrigo G,
    4. Dekker FW,
    5. Fliser D,
    6. Heine GH,
    7. Jager KJ,
    8. Kanbay M,
    9. Mallamaci F,
    10. Massy Z,
    11. Ortiz A,
    12. Parati G,
    13. Rossignol P,
    14. Tripepi G,
    15. Vanholder R,
    16. Wiecek A,
    17. London G
    ; European Renal and Cardiovascular Medicine (EURECA-m) Working Group of the European Renal Association–European Dialysis Transplantation Association (ERA-EDTA): Validity of vascular calcification as a screening tool and as a surrogate end point in clinical research. Hypertension 66: 3–9, 2015
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Clinical Journal of the American Society of Nephrology: 11 (1)
Clinical Journal of the American Society of Nephrology
Vol. 11, Issue 1
January 07, 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
View Selected Citations (0)
Print
Download PDF
Sign up for Alerts
Email Article
Thank you for your help in sharing the high-quality science in CJASN.
Enter multiple addresses on separate lines or separate them with commas.
Cocoa Flavanols: A Magic Potion for Protecting the Endothelium in Kidney Failure?
(Your Name) has sent you a message from American Society of Nephrology
(Your Name) thought you would like to see the American Society of Nephrology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Cocoa Flavanols: A Magic Potion for Protecting the Endothelium in Kidney Failure?
Carmine Zoccali, Francesca Mallamaci
CJASN Jan 2016, 11 (1) 9-11; DOI: 10.2215/CJN.12141115

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Cocoa Flavanols: A Magic Potion for Protecting the Endothelium in Kidney Failure?
Carmine Zoccali, Francesca Mallamaci
CJASN Jan 2016, 11 (1) 9-11; DOI: 10.2215/CJN.12141115
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Disclosures
    • Footnotes
    • References
  • Figures & Data Supps
  • Info & Metrics
  • View PDF

More in this TOC Section

  • Transplant Nephrology
  • Telehealth and Kidney Disease Care
  • Time to Abandon Kidney Biopsy to Diagnose Membranous Nephropathy?
Show more Editorials

Cited By...

  • No citing articles found.
  • Google Scholar

Similar Articles

Related Articles

  • Vasculoprotective Effects of Dietary Cocoa Flavanols in Patients on Hemodialysis: A Double–Blind, Randomized, Placebo–Controlled Trial
  • PubMed
  • Google Scholar

Keywords

  • flavanols
  • flavonoids
  • ESRD
  • flow mediated vasodilatation
  • endothelial dysfunction
  • cardiovascular risk
  • cacao
  • endothelium
  • polyphenols
  • renal insufficiency

Articles

  • Current Issue
  • Early Access
  • Subject Collections
  • Article Archive
  • ASN Meeting Abstracts

Information for Authors

  • Submit a Manuscript
  • Trainee of the Year
  • Author Resources
  • ASN Journal Policies
  • Reuse/Reprint Policy

About

  • CJASN
  • ASN
  • ASN Journals
  • ASN Kidney News

Journal Information

  • About CJASN
  • CJASN Email Alerts
  • CJASN Key Impact Information
  • CJASN Podcasts
  • CJASN RSS Feeds
  • Editorial Board

More Information

  • Advertise
  • ASN Podcasts
  • ASN Publications
  • Become an ASN Member
  • Feedback
  • Follow on Twitter
  • Subscribe to ASN Journals
  • Wolters Kluwer Partnership

© 2022 American Society of Nephrology

Print ISSN - 1555-9041 Online ISSN - 1555-905X

Powered by HighWire