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1.  Data Organization and Visualization 

For longitudinal study with moderate size, the dataset are often prepared in either of the 

two ways: wide format and long format. Wide format is suitable when the repeated 

measures are collected over discrete visits and subjects have roughly the same number of 

total visits. In a wide format dataset, a subject’s observations from multiple variables and 

visits (e.g. eGFR1, eGFR2,…,eGFRm) fit into one single row and different columns. The 

long format, on the other hand, is more efficient and suitable when the visit numbers are 

large and vary across subjects. In a long format dataset, the repeated measures of each 

subject from different time points are stacked in multiple rows. For variables that were 

measured at baseline (e.g., gender, age of enrollment and baseline hemoglobin levels), or 

those do not change over time such as genotype, their values are copied across all rows 

within each subject. A dataset that is arranged in the long format will contain, in addition 

to the subject IDs, the time variable (or variables) denoting when each observation was 

collected. In our motivating example, the variable ‘YEARS’ is the continuous time 

variable indicating when eGFRs were measured. Table A1 illustrates the wide and long 

format organization for the repeated eGFR values of two hypothetical subjects (01001 

and 01002). The first subject (01001) has two eGFR measures and the second subject 

(01002) was followed for 3 years with 4 repeated eGFR values. 

Long format is in general more preferred for advanced longitudinal data analysis 

since it is more flexible to handle subjects with different numbers of clinical visits or 

irregular time points of measurement, and is also easier for dynamically updating the 

dataset with future follow-ups.’ For example in Table A1, in order to shape a wide format 

data frame, we need to create 4 columns of eGFR variables (eGFR0, eGFR1, eGFR2 and 



eGFR3) to accommodate the second subject who has the maximum number of clinical 

visits. This leaves many cells with NA values for the first subject who had fewer eGFR 

measures. While in long format data frame, eGFR and Year are separately into two 

variables, and the repeated eGFR values over time are stacked on multiple rows. No extra 

space with NA needs to be created. Furthermore, as both subjects stay enrolled in the 

study, it is also easier to update the long-format data with future eGFR values by simply 

merging the new rows of observations with the old data frame without changing the 

contents of the old data frame.  

The simple analytic functions such as rANOVA in most of the standarad 

softwares (e.g., SAS, R and Stata) often accept wide format dataset. While long format 

data would be the default data format for longitudinal data analysis such GEE and linear 

mixed effects model. Many of them also provide functions to convert wide format to long 

format, or vice versa. When using the long-format data in the analysis, however, one 

should always remember to identify and specify the variable name for subject IDs, so that 

the program could recognize which rows of repeated measures belonging to the same 

subject. 

A. Wide format 
ID eGFR0 eGFR1 eGFR2 eGFR3 

01001 78.59 62.78 NA NA 
01002 55.28 47.32 47.22 31.54 

 

B. Long format 
ID YEARS eGFR 

01001 0 78.59 
01001 1 62.78 
01002 0 55.28 
01002 1 47.32 
01002 2 47.22 



 

Table A1: Wide-format (A) and Long-format (B) for the repeated eGFR values of two 

hypothetical subjects (01001 and 01002) with different number of clinical visits.  

 

 

2. Correlation Structures 

As emphasized in the paper, a unique and crucial characteristic of the longitudinal 

data is that the repeated measures within the same subject are potentially correlated. Here 

we introduce the concepts and the mathematical formulation of a correlation matrix using 

the APOL1 example. Suppose that eGFR is measured three times for each subject, 

eGFR1, eGFR2 and eGFR3. The correlation between eGFR values at any two visits 

specifies the extent to which the values of eGFR covary within subject. To represent this, 

we use a correlation matrix, as follows 

 eGFR1 eGFR2 eGFR3 

eGFR1 1 ρ12 ρ13 

eGFR2 ρ12 1 ρ23 

eGFR3 ρ13 ρ23 1 

 

The correlation on the diagonal is always 1 as it is perfectly correlated with itself. 

Those off diagonal elements ρkl (k, l=1,2,3) indicate the amount of correlations in eGFR 

values between visit k and visit l and take value between 0 and 1, and need to be 

estimated from the model fit. The matrix is symmetric and the values in the lower 

triangular below diagonal are a mirror image of the values above it. As mentioned in the 

01002 3 31.54 



paper, many longitudinal modeling techniques require one to specify the nature of these 

correlations, generally referred to as correlation structures. Typical choices of correlation 

structures include independence, exchangeable, autoregressive (AR), m-dependent and 

unstructured. Under independent structure assumption, all the off diagonal elements in 

the correlation matrix are assumed to be 0 indicating eGFR values from the two different 

visits are uncorrelated and are treated as measures obtained from two different subjects.  

Independence correlation structure: 

 eGFR1 eGFR2 eGFR3 

eGFR1 1 0 0 

eGFR2 0 1 0 

eGFR3 0 0 1 

 

The exchangeable structure (also called compound symmetry) assumes that 

correlations between any pair of the observations are identical to be value ρ, where ρ 

needs to be estimated from the data. In the following example matrix, any pair of eGFR 

values are estimated to have a correlation of 0.51. 

Exchangeble correlation structure: 

 eGFR1 eGFR2 eGFR3 

eGFR1 1 0.51 0.51 

eGFR2 0.51 1 0.51 

eGFR3 0.51 0.51 1 

 



Auto-regressive (AR) structure is often used in longitudinal analysis and refers to 

when the magnitude of the within-subject correlation decreases exponentially as the two 

visits get farther apart; in the example below, correlations of eGFR values from one visit 

apart such Year 1 and 2, 2 and 3 are equal and estimated to be 0.69, while eGFR values 

from two visits apart between Year 1 and 3 are less correlated to be 0.48 which is equal 

to 0.692.  

Auto-regressive correlation structure: 

 eGFR1 eGFR2 eGFR3 

eGFR1 1 0.69 0.48 

eGFR2 0.69 1 0.69 

eGFR3 0.48 0.69 1 

 

All the aforementioned structures only require the analysis to estimate one 

parameter. m-dependent structure is similar to AR but is more general in that the 

observations from different visits are correlated if they are within m visits from each 

other. The following matrix shows an example of 1-dependent structure where correlation 

is 0.70 only when the visits are one year apart (Year 1 and 2, 2 and 3). Year 1 and 3 have 

distance of two years and hence their eGFR values are assumed to be uncorrelated.  

1-dependent correlation structure: 

 eGFR1 eGFR2 eGFR3 

eGFR1 1 0.70 0 

eGFR2 0.70 1 0.70 

eGFR3 0 0.70 1 



At the opposite extreme is the unstructured covariance structure, in which the 

correlations between any pair of visits are assumed to be unique with no pre-specified 

patterns. As a result, more unknown parameters need to be estimated from data and a 

larger sample size is required. The following example shows an estimated unstructured 

correlation matrix where no specific patterns were assumed except that the matrix is 

symmetric.  

unstructured correlation structure: 

 eGFR1 eGFR2 eGFR3 

eGFR1 1 0.67 0.34 

eGFR2 0.67 1 0.57 

eGFR3 0.34 0.57 1 

 

 

 

 

 

3. Statistical Methods for Repeated Measures as Outcome 

GEE model 

Model (1) in the paper only include repeated eGFR as an outcome and the time is 

expressed in Year and the exposure variable is 𝐴𝐴𝐴𝐴1 risk groups. 𝐴𝐴𝐴𝐴1 variable 

contains three categories: Caucasian as reference, APOL1 low risk and  APOL1 high risk. 

The detailed mathematical formula of model (1) is specified in below  



         𝑒𝑒𝑒𝑒𝑖𝑖 =  𝛽0 + 𝜷1𝐴𝐴𝐴𝐴1𝑖 + 𝛾1𝑌𝑒𝑌𝑌𝑖𝑖 + 𝜸2𝑌𝑒𝑌𝑌𝑖𝑖 ∗ 𝐴𝐴𝐴𝐴1𝑖 + 𝑒𝑖𝑖               (A.1)      

The mean response model 𝑒𝑒𝑒𝑒 =  𝛽0 + 𝜷1𝐴𝐴𝐴𝐴1 + 𝛾1𝑌𝑒𝑌𝑌 + 𝜸2𝑌𝑒𝑌𝑌 ∗ 𝐴𝐴𝐴𝐴1 

describes the average relationship between the outcome and covariates in the population. 

β0 and β1 account for the associations between baseline eGFR and APOL1 risk groups. 

The coefficients in front of the time varying variables (𝛾1 and  𝜸2) depict the relationship 

between eGFR slope and the corresponding risk factors. The coefficients in bold 

represent a vector of length two. Since APOL1 is coded as a three-level categorical 

variable, 𝜷1 is a vector of coefficients with two values (𝛽1𝐿,𝛽1𝐻). That is, 𝛽0 represents 

the average baseline eGFR for the reference group (Caucasian), 𝛽0 + 𝛽1𝐿 stands for the 

baseline eGFR for APOL1 low risk groups and 𝛽0 + 𝛽1𝐻 is the baseline eGFR for APOL1 

high risk groups. The coefficients in front of the time-varying variables quantify the 

association of eGFR slope and the variables. In particular, 𝛾1 represents the average 

eGFR slope for the reference Caucasian group. 𝜸2 contains two coefficients that 

correspond to the differences of eGFR slopes between the two APOL1 risk groups and 

Caucasian, respectively. 𝑒𝑖𝑖 is the error term indicated in model (1) of the paper and we 

typically assume 𝑒𝑖𝑖 satisfies one of the working correlation structures.              

 

Mixed effects model 

In our example, the subject-specific random intercept characterizes the difference 

between an individual’s baseline eGFR and the population average, and a random slope 

in front of a time variable describes the deviation of individual slope from the population 

average. Thus, the mixed effects model for our example looks like the following: 

𝑒𝑒𝑒𝑒𝑖𝑖 =  𝛽0 + 𝜷1𝐴𝐴𝐴𝐴1𝑖 + 𝛾1𝑌𝑒𝑌𝑌𝑖𝑖 + 𝜸2𝑌𝑒𝑌𝑌𝑖𝑖 ∗ 𝐴𝐴𝐴𝐴1𝑖 + 𝑏0𝑖 + 𝑏1𝑖𝑌𝑒𝑌𝑌𝑖𝑖 + 𝑒𝑖𝑖   (A.2) 



The fixed effects coefficients 𝛽0, 𝜷1, 𝛾1, 𝜸2 share the same interpretations as in the GEE 

model (A.1) for the population average trend. 𝑏0𝑖 and 𝑏1𝑖 are random intercept and 

random slope that are unique for subject i. The estimated coefficients can be used to 

construct the individual trajectory. Suppose subject i is Caucasian, his/her eGFR 

trajectory was estimated to start with baseline value 𝛽0 + 𝑏0𝑖 at the entry of the study, 

and changes 𝛾1 + 𝑏1𝑖 per year. The estimated eGFR trajectories from two hypothetical 

subjects are illustrated in Figure 2 in the paper.  

 

 

4. Missing Data Mechanism 

In general, GEE assumes that data are covariate-dependent missing completely at random 

(MCAR) 1. This is saying that whether an outcome variable, such as eGFR, is missing at 

a particular visit does not depend on the renal function itself, but might be related with 

other observed covariates such as the time of visit or baseline characteristics. This 

assumption could be practically valid in longitudinal studies in that it allows the chance 

of missing eGFR measurements becomes larger in the later phase of the study, but is 

unrelated to other observed eGFR values at a given time point. Mixed-effects model 

handles both MCAR and missing at random (MAR), where MAR allows the chance of 

missing eGFR to be also related with eGFRs from the past. When their corresponding 

missing assumptions are satisfied, since both GEE and mixed effects models allow for the 

outcome data being observed on a different set of time points for different subjects, no 

data imputation is necessary. However, if the assumptions are violated, then simply apply 



the regular GEE or mixed effects model on longitudinal data with missing values will 

result in biased estimates and invalid inference. 

Another important scenario that is often encountered in CKD is missing not at 

random (MNAR) 1  or informative censoring 2, where neither mixed effects model or data 

imputation is suitable. For instance, patients drop out of the study due to some competing 

events that are related with CKD progression such as initiation of dialysis, renal 

transplantation or death. In these scenarios, the chance of missing eGFR could truly 

depend on the unobserved eGFR values and kidney function. Alternative methods 

discussed in the paper that jointly combine the missing mechanism and repeated 

measurements are more appropriate.  

 

 

5. Statistical softwares 

GEE model 

GEE has been implemented in many statistical softwares such as PROC GENMOD in 

SAS and ‘geepack’ package  in R. Model selection in GEE cannot be achieved using 

likelihood ratio test. Instead, one can choose the best model that minimizes the quasi-

likelihood under the independence model criterion (QIC) 3, or QICu that penalizes the 

model complexity when too many covariates are included. This can be done using PROC 

IML in SAS or ‘MuMIn’ in R. Alternatively, to select an appropriate working correlation 

structure for GEE, in SAS one can choose to output either the ‘empirical variance’ that 

refers to the robust variance estimate, or the ‘model-based’ estimate that assumes the 



working correlation is true. The closer the two estimates are, the more likely that the 

working correlation is appropriately selected.   

To fit a weighted GEE (WEE) model when data are missing at random (MAR), 

we can specify WEIGHT statement when using PROC GENMOD, or MISSMODEL in 

PROC GEE in SAS. 

 

Mixed effects model 

The linear mixed effects model can be implemented in SAS using PROC MIXED, and in 

R using package ‘lme4’ or ‘lmerTest’. For generalized linear mixed effects model with 

non-normal outcome, one can use command PROC GLIMMIX in SAS, or ‘glmm’ 

package in R. Model selection in GEE can be achieved using likelihood ratio test and 

compare Aikake Information Criterion (AIC) and Bayesian Information Criterion (BIC). 

 

A detailed summary of available statistical softwares and packages can be found in Table 

4 of Boucquemont et al.4 
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