SUPPLEMENTAL MATERIAL

Supplemental Table 1. Associations of continuous estimated glomerular filtration rate (eGFR) with individual gait variables (additional covariates included).

Supplemental Table 2. Associations of continuous estimated glomerular filtration rate (eGFR) with factor analysis gait domains (additional covariates included).

Supplemental Table 3. Rotated component loadings of eight gait variables using principal component analysis.

Supplemental Table 4. Associations of continuous estimated glomerular filtration rate (eGFR) with principal component analysis gait domains.

Supplemental Table 5. Associations of continuous estimated glomerular filtration rate (eGFR) with factor analysis gait domains after exclusion of diabetes or neuropathy.

Ho et al.

Supplemental Table 1. Associations of continuous estimated glomerular filtration rate (eGFR) with individual gait variables (additional covariates included)

Gait variable	$\begin{gathered} \text { eGFR } \geq 60 \\ (n=184) \end{gathered}$		eGFR <60$(n=119)$	
		$0 \mathrm{ml} / \mathrm{m}$		
	Coefficient (95\% CI)	P	Coefficient (95\% CI)	P
	Walking-while-talking			
Speed, cm/s	$\begin{gathered} -0.6 \\ (-3.5,2.3) \end{gathered}$	0.69	$\begin{gathered} -3.5 \\ (-6.7,-0.3) \end{gathered}$	0.03
Cadence, steps/min	$\begin{gathered} -0.9 \\ (-3.5,1.6) \end{gathered}$	0.45	$\begin{gathered} -1.7 \\ (-4.5,1.1) \end{gathered}$	0.22
Step length, cm	$\begin{gathered} 0.3 \\ (-0.9,1.5) \end{gathered}$	0.63	$\begin{gathered} -1.6 \\ (-3.0,-0.2) \end{gathered}$	0.02
Swing, \%	$\begin{gathered} 0.4 \\ (-0.2,0.9) \end{gathered}$	0.18	$\begin{gathered} -0.9 \\ (-1.5,-0.3) \end{gathered}$	0.006
Stance, \%	$\begin{gathered} -0.4 \\ (-0.9,0.2) \end{gathered}$	0.18	$\begin{gathered} 0.9 \\ (0.3,1.5) \end{gathered}$	0.005
Double support, \%	$\begin{gathered} -0.2 \\ (-1.1,0.7) \end{gathered}$	0.65	$\begin{gathered} 1.2 \\ (0.3,2.2) \end{gathered}$	0.01
Step time SD, s	$\begin{gathered} 0.02 \\ (-0.01,0.1) \end{gathered}$	0.28	$\begin{gathered} 0.003 \\ (-0.03,0.04) \end{gathered}$	0.87
Swing time SD, s	$\begin{gathered} 0.01 \\ (-0.01,0.02) \\ \hline \end{gathered}$	0.24	$\begin{gathered} -0.01 \\ (-0.02,0.01) \\ \hline \end{gathered}$	0.35
	Dual-task cost			
Speed DTC, \%	$\begin{gathered} -0.4 \\ (-2.9,2.2) \end{gathered}$	0.79	$\begin{gathered} -1.7 \\ (-4.6,1.1) \end{gathered}$	0.22
Cadence DTC, \%	$\begin{gathered} -0.7 \\ (-3.0,1.5) \end{gathered}$	0.52	$\begin{gathered} -1.1 \\ (-3.6,1.3) \end{gathered}$	0.37
Step length DTC, \%	$\begin{gathered} 0.0001 \\ (-1.5,1.5) \end{gathered}$	1.00	$\begin{gathered} -0.7 \\ (-2.4,0.9) \end{gathered}$	0.39
Swing DTC, \%	$\begin{gathered} 1.0 \\ (-0.4,2.3) \end{gathered}$	0.16	$\begin{gathered} -1.5 \\ (-3.0,-0.05) \end{gathered}$	0.04
Stance DTC, \%	$\begin{gathered} -0.5 \\ (-1.1,0.2) \end{gathered}$	0.18	$\begin{gathered} 0.7 \\ (-0.002,1.5) \end{gathered}$	0.051
Double support DTC, \%	$\begin{gathered} -0.7 \\ (-2.4,1.0) \end{gathered}$	0.43	$\begin{gathered} 1.6 \\ (-0.3,3.4) \end{gathered}$	0.10
Step time SD DTC, \% ($\mathrm{n}=300$)	$\begin{gathered} 153.7 \\ (-87.6,395.0) \end{gathered}$	0.21	$\begin{gathered} -26.5 \\ (-291.3,238.3) \end{gathered}$	0.84
Swing time SD DTC, \% ($\mathrm{n}=302$)	$\begin{gathered} 71.6 \\ (-12.0,155.2) \end{gathered}$	0.09	$\begin{gathered} -46.4 \\ (-138.4,45.6) \end{gathered}$	0.32

Multivariable linear regression adjusting for age, sex, race, education, body mass index, neuropathy, number of comorbidities, number of medications, diuretic use, acidosis, hemoglobin, mean arterial pressure, and performance of exercise in the past 30 days. Linear splines for eGFR were constructed with knot placed at $60 \mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$. Dual-task cost = (walking-while-talking dual-task gait variable -walking-only single-task gait variable) / (walking-only single-task gait variable) $\times 100 \%$. $95 \% \mathrm{CI}, 95 \%$ confidence interval. DTC, dual-task cost. SD, standard deviation.

Ho et al.

Supplemental Table 2. Associations of continuous estimated glomerular filtration rate (eGFR) with factor analysis gait domains (additional covariates included)

Gait domain	eGFR ≥ 60		$\begin{aligned} & \text { eGFR <60 } \\ & \mathbf{n}^{2} \text { lower eGFR) } \\ & \hline \end{aligned}$	
	$\begin{gathered} \hline \text { Coefficient } \\ (95 \% \mathrm{CI}) \end{gathered}$	P	$\begin{gathered} \hline \text { Coefficient } \\ (95 \% \mathrm{Cl}) \\ \hline \end{gathered}$	P
	Walking-while-talking			
Rhythm	$\begin{gathered} 0.1 \\ (-0.04,0.2) \end{gathered}$	0.24	$\begin{gathered} -0.2 \\ (-0.3,-0.1) \end{gathered}$	0.004
Pace	$\begin{gathered} -0.1 \\ (-0.2,0.1) \end{gathered}$	0.38	$\begin{gathered} -0.04 \\ (-0.2,0.1) \end{gathered}$	0.63
Variability	$\begin{gathered} 0.1 \\ (-0.1,0.2) \\ \hline \end{gathered}$	0.28	$\begin{array}{r} -0.04 \\ (-0.2,0.1) \\ \hline \end{array}$	0.64
	($\mathrm{n}=181$)	Dual-task cost		
Rhythm DTC	$\begin{gathered} 0.1 \\ (-0.04,0.2) \end{gathered}$	0.15	$\begin{gathered} -0.2 \\ (-0.3,-0.01) \end{gathered}$	0.04
Pace DTC	$\begin{gathered} -0.1 \\ (-0.2,0.1) \end{gathered}$	0.32	$\begin{gathered} -0.02 \\ (-0.2,0.1) \end{gathered}$	0.82
Variability DTC	$\begin{gathered} 0.1 \\ (-0.05,0.2) \end{gathered}$	0.20	$\begin{gathered} -0.03 \\ (-0.2,0.1) \end{gathered}$	0.66

Multivariable linear regression adjusting for age, sex, race, education, body mass index, neuropathy, number of comorbidities, number of medications, diuretic use, acidosis, hemoglobin, mean arterial pressure, and performance of exercise in the past 30 days was performed. Linear splines for eGFR were constructed with knot placed at $60 \mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2} .95 \% \mathrm{CI}, 95 \%$ confidence interval. DTC, dual-task cost.

Ho et al.

Supplemental Table 3. Rotated component loadings of eight gait variables using principal component analysis

Gait variable	Gait Domain		
	Walking-while-talking ($\mathrm{n}=330$)		
	Rhythm	Pace	Variability
Swing, \%	0.52	-0.01	0.09
Step length, cm	0.40	-0.01	-0.33
Double support, \%	-0.45	-0.09	0.11
Stance, \%	-0.52	0.01	-0.09
Cadence, steps/min	-0.04	0.73	0.20
Speed, cm/s	0.21	0.50	-0.06
Swing time SD, s	0.24	-0.45	0.37
Step time SD, s	0.02	0.06	0.83
Variance Explained, \%	44	27	17
	Dual-task cost$(\mathrm{n}=326)$		
	Rhythm DTC	Pace DTC	Variability DTC
Swing DTC, \%	0.55	-0.03	0.01
Double support DTC, \%	-0.42	-0.14	0.14
Stance DTC, \%	-0.55	0.05	-0.02
Cadence DTC, \%	0.02	0.63	0.13
Speed DTC, \%	0.14	0.57	-0.04
Swing time SD DTC, \%	0.31	-0.48	0.17
Step time SD DTC, \%	0.13	0.10	0.86
Step length DTC, \%	0.29	0.10	-0.44
Variance Explained (\%)	38	30	16

Principal component analysis was performed with varimax rotation. The highest loading variables are in bold. DTC, dual-task cost. SD, standard deviation. Step time SD DTC, $n=327$; swing time SD DTC, $\mathrm{n}=329$.

Ho et al.

Supplemental Table 4. Associations of continuous estimated glomerular filtration rate (eGFR) with principal component analysis gait domains

Gait domain	eGFR ≥ 60		$\begin{aligned} & \text { eGFR <60 } \\ & \mathbf{n}^{2} \text { lower eGFR) } \\ & \hline \end{aligned}$	
	$\begin{gathered} \hline \text { Coefficient } \\ (95 \% \mathrm{CI}) \end{gathered}$	P	$\begin{gathered} \hline \text { Coefficient } \\ (95 \% \mathrm{CI}) \end{gathered}$	P
	Walking-while-talking			
Rhythm	$\begin{gathered} 0.2 \\ (-0.03,0.4) \end{gathered}$	0.09	$\begin{gathered} -0.4 \\ (-0.6,-0.2) \end{gathered}$	<0.001
Pace	$\begin{gathered} -0.04 \\ (-0.2,0.1) \end{gathered}$	0.63	$\begin{gathered} -0.1 \\ (-0.3,0.1) \end{gathered}$	0.30
Variability	$\begin{gathered} 0.1 \\ (-0.1,0.2) \\ \hline \end{gathered}$	0.29	$\begin{gathered} -0.002 \\ (-0.2,0.1) \\ \hline \end{gathered}$	0.98
	Dual-task cost			
Rhythm DTC	$\begin{gathered} 0.2 \\ (0.01,0.4) \end{gathered}$	0.04	$\begin{gathered} -0.3 \\ (-0.5,-0.1) \end{gathered}$	0.01
Pace DTC	$\begin{gathered} -0.03 \\ (-0.2,0.2) \end{gathered}$	0.75	$\begin{gathered} -0.1 \\ (-0.3,0.2) \end{gathered}$	0.60
Variability DTC	$\begin{gathered} 0.1 \\ (-0.1,0.2) \end{gathered}$	0.38	$\begin{gathered} -0.01 \\ (-0.2,0.1) \end{gathered}$	0.86

Multivariable linear regression adjusting for age, sex, race, education, body mass index, neuropathy, number of comorbidities, and number of medications was performed. Linear splines for eGFR were constructed with knot placed at $60 \mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2} .95 \% \mathrm{Cl}, 95 \%$ confidence interval. DTC, dual-task cost.

Ho et al.

Supplemental Table 5. Associations of continuous estimated glomerular filtration rate (eGFR) with factor analysis gait domains after exclusion of diabetes or neuropathy

Gait domain	EXCLUDING PARTICIPANTS WITHDIABETES				EXCLUDING PARTICIPANTS WITH NEUROPATHY			
	eGFR ≥ 60 eGFR <60 (Per $10 \mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$ lower eGFR)				eGFR ≥ 60 eGFR <60 (Per $10 \mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$ lower eGFR)			
	$\begin{gathered} \text { Coefficient } \\ (95 \% \mathrm{Cl}) \\ \hline \end{gathered}$		$\begin{gathered} \text { Coefficient } \\ (95 \% \mathrm{CI}) \end{gathered}$	P	$\begin{gathered} \text { Coefficient } \\ (95 \% \mathrm{CI}) \end{gathered}$	P	$\begin{gathered} \text { Coefficient } \\ (95 \% \mathrm{CI}) \end{gathered}$	P
	$\begin{aligned} & \text { Walking-while-talking } \\ & (\mathrm{n}=160) \quad(\mathrm{n}=105) \end{aligned}$				$\begin{gathered} \text { Walking-while-talking } \\ (\mathrm{n}=174) \end{gathered} \quad(\mathrm{n}=119)$			
Rhythm	$\begin{gathered} 0.1 \\ (0.02,0.2) \end{gathered}$		$\begin{gathered} -0.2 \\ (-0.3,-0.1) \end{gathered}$	0.001	$\begin{gathered} 0.1 \\ (-0.002,0.2) \end{gathered}$	0.054	$\begin{gathered} -0.2 \\ (-0.3,-0.1) \end{gathered}$	0.001
Pace	$\begin{gathered} -0.04 \\ (-0.2,0.1) \end{gathered}$	0.56	$\begin{gathered} 0.02 \\ (-0.1,0.2) \end{gathered}$	0.82	$\begin{gathered} -0.04 \\ (-0.2,0.1) \end{gathered}$	0.54	$\begin{gathered} -0.01 \\ (-0.1,0.1) \end{gathered}$	0.88
Variability	$\begin{gathered} 0.1 \\ (-0.04,0.3) \end{gathered}$	0.15	$\begin{gathered} -0.1 \\ (-0.2,0.1) \\ \hline \end{gathered}$	0.36	$\begin{gathered} 0.03 \\ (-0.1,0.1) \end{gathered}$	0.51	$\begin{gathered} -0.04 \\ (-0.1,0.1) \end{gathered}$	0.38
	Dual-task cost				Dual-task cost			
Rhythm DTC	$\begin{gathered} 0.1 \\ (-0.003,0.3) \end{gathered}$	0.055	$\begin{gathered} -0.2 \\ (-0.3,- \\ 0.03) \end{gathered}$	0.02	$\begin{gathered} 0.1 \\ (-0.02,0.2) \end{gathered}$	0.09	$\begin{gathered} -0.1 \\ (-0.3,-0.01) \end{gathered}$	0.03
Pace DTC	$\begin{gathered} -0.05 \\ (-0.2,0.1) \end{gathered}$	0.51	$\begin{gathered} 0.01 \\ (-0.1,0.2) \end{gathered}$	0.85	$\begin{gathered} -0.1 \\ (-0.2,0.1) \end{gathered}$	0.46	$\begin{gathered} -0.001 \\ (-0.1,0.1) \end{gathered}$	0.99
Variability DTC	$\begin{gathered} 0.1 \\ (-0.1,0.2) \end{gathered}$	0.27	$\begin{gathered} -0.03 \\ (-0.2,0.1) \end{gathered}$	0.67	$\begin{gathered} 0.02 \\ (-0.05,0.1) \end{gathered}$	0.57	$\begin{gathered} -0.03 \\ (-0.1,0.05) \end{gathered}$	0.50

Multivariable linear regression adjusting for age, sex, race, education, body mass index, neuropathy, number of comorbidities, and number of medications was performed. Linear splines for eGFR were constructed with knot placed at $60 \mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2} .95 \% \mathrm{CI}, 95 \%$ confidence interval. DTC, dual-task cost.

