Supplemental Material Table of Contents

Supplemental Table 1. Competing risk regression of 1-year overall survival between patients on BIA or control group

Supplemental Table 2. Competing risk regression of 1-year technique survival between patients on BIA or control group

Supplemental Table 3. Competing risk regression of 3-year overall survival between patients on BIA or control group

Supplemental Table 4. Competing regression of 3-year technique survival between patients on BIA or control group

Supplemental Table 5. Clinical characteristics of patients on different outcomes at 1-year follow-up

Supplemental Table 6. Clinical characteristics of patients on different outcomes at 3-year follow-up Supplemental Table 7. Cox regression analysis of groups associated with all-cause death and technique failure

Supplemental Figure 1. Comparison of the BIA group and the control group in terms of patient survival based on per-protocol population

Supplemental Figure 2. Comparison of the BIA group and the control group in terms of technique survival based on per-protocol population

Supplemental Figure 3. Competing risk analysis on 1-year survival

Supplemental Figure 4. Competing risk analysis on 1-year technique survival

Supplemental Figure 5. Competing risk analysis on 3-year survival

Supplemental Figure 6. Competing risk regression of 3-year technique survival

Supplemental Figure 7. Comparison of the decline rate of the ECW/TBW ratio by 0.001 unit (per month) in the BIA and control group through one year intervention after multiple imputation (a) BIA group; (b) control group

Supplemental Appendix 1

Supplemental Appendix 2

Supplemental Table 1 Competing risk regression of overall survival between the BIA group and control group

Univariable A	nalysis		Multivariable Analy	sis
	SHR(95%CI)	р	SHR(95%CI)	p
group0	0.24 (0.05, 1.14)	0.074	0.89 (0.12, 6.49)	0.91
age	1.11 (1.05, 1.18)	0	1.13 (1.04, 1.24)	0.005
Dialysis age	1.02 (1.02, 1.03)	0	1.02 (1.01, 1.04)	0.008
DM	1.66 (0.47, 5.82)	0.43	0.71 (0.16, 3.03)	0.64
CVD	1.21 (0.92, 1.58)	0.17	1.15 (0.68, 1.95)	0.59
SBP	0.97 (0.94, 1)	0.036	0.97 (0.94, 1)	0.083
BUA	0.78 (0.68, 0.91)	0.001	0.84 (0.69, 1.03)	0.095
ALB	1 (0.99, 1.01)	0.92	1 (0.99, 1.02)	0.68

Conclusion: The Fine and Gray's proportional subhazards model demonstrated BIA group is not different with the control group either by univariable analysis or multivariable analysis.

Supplemental Table 2 Competing risk regression of 1-year technique survival between the BIA group and control group

Univariable Analysis		Multivariable Analysis	Multivariable Analysis		
	SHR(95%CI)	p	SHR(95%CI)	p	
group0	0.46 (0.17, 1.2)	0.11	0.44 (0.16, 1.18)	0.1	
age	1 (0.97, 1.03)	0.83	0.99 (0.97, 1.02)	0.67	
Dialysis age	1 (0.97, 1.02)	0.65	1 (0.97, 1.02)	0.67	
DM	1.15 (0.44, 3)	0.77	1.23 (0.48, 3.13)	0.66	
CVD	0.98 (0.7, 1.37)	0.91	0.93 (0.63, 1.38)	0.72	
SBP	1 (0.98, 1.02)	0.93	1 (0.98, 1.02)	0.81	
BUA	1.01 (0.9, 1.13)	0.91	1 (0.89, 1.13)	0.96	
ALB	1 (1, 1.01)	0.36	1 (1, 1.01)	0.32	

Conclusion: the competing risk analysis demonstrated BIA group is not significantly different with the control group either by univariable analysis or multivariable analysis.

Supplemental Table 3 Competing risk regression of 3-year overall survival the BIA group and control group

Univariable Analysis			Multivariable Analy	Multivariable Analysis		
	SHR(95%CI)	р	SHR(95%CI)	p		
Group	0.39 (0.20, 0.74)	0.004	0.51(0.26,0.99)	0.047		
Age	1.06 (1.04, 1.09)	< 0.001	1.06(1.03,1.08)	< 0.001		
dialysis age	1.01 (1.00, 1.02)	0.220	1.01(1.00,1.02)	0.170		
DM	2.46 (1.37, 4.43)	0.002	1.39(0.71,2.69)	0.330		
CVD	1.20 (0.97, 1.50)	0.098	1.06(0.77,1.44)	0.730		
SBP	0.99 (0.97, 1.00)	0.130	0.98(0.97,1.00)	0.030		
BUA	0.94 (0.86, 1.02)	0.130	0.94(0.87,1.02)	0.140		
ALB	0.99 (0.99, 1.00)	0.700	1.00(0.99,1.00)	0.610		

Conclusion: The Fine and Gray's proportional subhazards model demonstrated BIA group is on a relatively lower mortality risk than the control group either by univariable analysis or multivariable analysis (adjusted for age, vintage, diabetes, CVD history, hypertension, serum albumin and serum uric acid, SHR and its 95%CI: 0.51 (0.26,0.99), p=0.047.

Supplemental Table 4 Competing risk regression of three-year technique survival between the BIA group and control group

Univariable Analysis			Multivariable Anal	Multivariable Analysis		
	SHR(95%CI)	р	SHR(95%CI)	p		
Group	0.62 (0.35, 1.11)	0.110	0.59(0.32, 1.10)	0.096		
Age	1.00 (0.98, 1.02)	0.920	1.00(0.98, 1.02)	0.910		
Dialysis age	1.00 (0.99, 1.01)	0.730	1.00(0.99, 1.01)	0.810		
DM	0.99 (0.52, 1.88)	0.990	1.04(0.53, 2.06)	0.910		
CVD	0.84 (0.60, 1.16)	0.280	0.80(0.56, 1.13)	0.210		
SBP	0.99 (0.98, 1.01)	0.390	0.99(0.98, 1.01)	0.380		
BUA	1.01 (0.93, 1.09)	0.820	1.01(0.93, 1.09)	0.800		
ALB	0.99 (0.99, 1.00)	0.900	1.00(1.00, 1.00)	0.990		

Conclusions: the difference of technique failure rates was not statistically significant between BIA group and control group. Univariable Analysis showed that the SHR and its %95CI: 0.62 (0.35, 1.11), p=0.110. And Multivariable Analysis estimated the SHR and its %95CI: 0.59 (0.11, 0.59), p=0.096.

Supplemental Table 5. Clinical characteristics of patients on different outcomes at 1-year follow-up

Characteristics	Completers	Death	Transfer to HD	Transplant	Dropout	p
Characteristics	(n = 198)	(n = 10)	(n = 17)	(n = 10)	(n=5)	P
						0.004
Age (yr)	49.53 ± 15.10	$67.8 \pm 9.6**$	48.4 ± 16.3	$36.1 \pm 9.4**$	45.0 ± 16.4	< 0.001
Vintage (month)	31 (14, 50)	41 (31, 57) **	29 (19, 54)	30(16, 37)	36 (24, 60)	0.01
Diabetes mellitus	59 (29.8)	4 (40.0)	5 (29.4)	0 (0.0)	1 (20.0)	0.29
Systolic BP (mmHg)	142 ± 20	130 ± 18	142 ± 17	138 ± 25	149 ± 19	0.36
Diastolic BP (mmHg)	84 ± 13	77 ± 11	80 ± 14	90 ± 11	89 ± 19	0.15
History of CVD n, (%)	24 (12.1)	4 (40.0) *	3 (17.6)	1 (10.0)	1 (20.0)	0.14
History of stroke n, (%)	8 (4.0)	1 (10.0)	1 (5.9)	0 (0.0)	0 (0.0)	0.80
Comorbidity score	3 (2,5)	5 (2, 6) **	3 (2, 4)	2 (1, 3) **	3 (1,4)	0.001
ECOG activity index (1/2/3/4/) n	3/115/69/11	0/1/6/3**	0/10/4/3	0/9/1/0*	0/3/1/1	0.02
NYHA classification (1/2/3) n	90/95/13	1/7/2*	3/12/2	8/2/0	2/1/2*	0.003
mGFR (ml/min/1.73 m ²)	0.9 (0.2, 2.7)	0.6(0, 0.8)	0.5 (0, 2.8)	0.1 (0.1, 0.2) *	1.3 (1.0, 2.5)	0.05
Hemoglobin (g/dL)	10.8 ± 1.7	11.9 ± 1.9	$9.6 \pm 2.3*$	11.4 ± 2.5	10.0 ± 3.7	0.02
Serum albumin(g/dL)	3.7 ± 0.4	$3.4 \pm 0.4**$	3.7 ± 0.3	3.8 ± 0.3	3.7 ± 0.5	0.04
Pre-albumin (mg/dl)	372 ± 90	299 ± 60**	390 ± 67	408 ± 72	392 ± 94	0.05
Uric acid (mg/dl)	4.5 ± 0.8	4.5 ± 1.4	4.8 ± 1.1	4.9 ± 0.7	4.3 ± 0.7	0.48
iPTH (pg/ml)	409 (248, 681)	411 (231, 814)	422 (260, 730)	602 (288, 781)	313 (274, 609)	0.92
hs-CRP (mg/L)	1.5 (0.6, 4.4)	4.2 (2.7, 10.6) *	1.3 (0.5, 9.4)	0.7(0.3, 1.9)	1.4 (0.9, 2.5)	0.18
NT-proBNP (pg/ml)	4106	48981	11664	3257	7865	0.16

	(1603, 12199)	(11154, 90970)	(3159, 28962)	(2000, 12255)	(1691, 17377)	
PD dosage (L/d)	8 (8, 8)	8 (8, 8)	8 (8, 10)	8 (8,9)	8 (8,8)	0.25
Total Kt/v	2.3 ± 0.6	$1.8 \pm 0.3*$	$1.9 \pm 0.6*$	2.2 ± 0.5	2.2 ± 0.2	0.05
Total Ccr (L/w)	67 ± 23	49 ± 15	59 ± 18	58 ± 15	76 ± 14	0.11
nPCR	0.8 ± 0.2	$0.7\pm0.2*$	$0.7 \pm 0.1*$	0.9 ± 0.2	0.8 ± 0.1	0.02
Total body water (L)	37.0 ± 7.1	36.1 ± 4.8	$43.8 \pm 10.7**$	35.6 ± 10.8	39.2 ± 7.7	0.009
Extracellular water (L)	15.2 ± 3.1	14.9 ± 2.1	$18.1 \pm 4.4**$	14.4 ± 4.5	16.5 ± 4.1	0.01
Intracellular water (L)	21.8 ± 4.4	21.2 ± 2.8	$25.6 \pm 6.2**$	21.2 ± 6.3	23.1 ± 4.3	0.02
Extracellular wate//total body	40.5	40.6	40.8	40.2	40.6	0.00
water (×10e2)	(40.0,41.2)	(40.2, 41.0)	(40.2, 41.5)	(40.0, 40.8)	(40.2, 40.9)	0.88

Note: values for continuous variables are given as mean \pm standard deviation or median [interquartile range] . Post hoc multiple comparisons were conducted between "death, transfer to HD, transplant and dropout" and "completers" respectively. *p < 0.05; **p < 0.01

Abbreviations: BP, blood pressure; CVD, cardiovascular disease; NYHA, New York Heart association 1 as grade II, 2 as grade III, 3 as grade III; mGFR, measured glomerular filtration rate; iPTH, intact parathyroid hormone; hs-CRP, high-sensitivity C-reactive protein; NT-proBNP, N-terminal pro-natriuretic peptide; PD, peritoneal dialysis; Ccr, creatinine clearance; nPCR, normalized protein clearance rate.

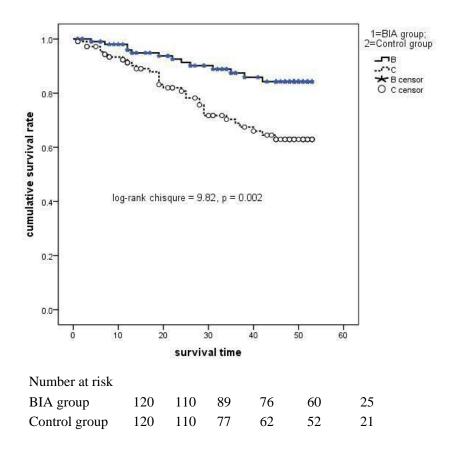
Supplemental Table 6. Clinical characteristics of patients on different outcomes at 3-year follow-up

Characteristics	Completers	Death	Transfer to HD	Transplant	Dropout	p
	(n = 86)	(n = 44)	(n = 46)	(n = 42)	(n = 22)	
Age (yr)	50.1 ± 14.2	60.8 ± 13.9 **	49.3 ± 14.7	36.1 ± 10.1 **	50.5 ± 14.2	< 0.001
Vintage (month)	32 (16, 46)	25 (18, 45)	31 (17, 50)	30 (16, 40)	33 (6,41)	0.85
Diabetes mellitus	25 (29.1)	21(47.7)	13(28.3)	2(4.8) **	8(36.4)	< 0.001
Systolic BP (mmHg)	143 ± 21	137 ± 21	140 ± 17	139 ± 18	156 ± 19 *	0.007
Diastolic BP (mmHg)	83 ± 12	77 ± 11 **	82 ± 14	90 ± 10 **	88 ± 15	< 0.001
History of CVD n, (%)	7 (8.1)	12 (27.3) **	6 (13)	3 (7.1)	5 (22.7)	0.02
History of stroke n, (%)	3 (3.5)	2 (4.5)	2 (4.3)	1 (2.4)	2 (9.1)	0.41
Comorbidity score	3(2,5)	6 (3,7) **	3(2,6)	2 (2,3) **	3(2,6)	< 0.001
ECOG activity index (1/2/3/4/) n	2/51/30/3	1/12/23/8**	0/29/13/4	0/36/6/0*	0/10/9/3	< 0.001
NYHA classification (1/2/3) n	41/40/5	11/25/5*	18/26/2	28/12/2	6/11/5*	0.001
mGFR (ml/min/1.73 m ²)	1.1 (0.2, 3.6)	1.0 (0.9, 1.6)	0.5 (0, 2.8)	0.2 (0, 1.1) **	0.7 (0.1, 2.9)	0.08
Hemoglobin (g/dL)	10.8 ± 1.8	11.1 ± 1.6	10.8 ± 2.2	10.7 ± 1.8	$9.8 \pm 2.3*$	0.15
Serum albumin(g/dL)	3.7 ± 0.4	3.6 ± 0.4	3.7 ± 0.4	3.8 ± 0.2	3.7 ± 0.4	0.62
Pre-albumin (mg/dl)	368 ± 96	324 ± 89	388 ± 68	411 ± 74 **	383 ± 73	< 0.001
Uric acid (mg/dl)	4.6 ± 1.0	4.5 ± 1.0	4.5 ± 0.8	4.6 ± 0.7	4.4 ± 1.1	0.93
iPTH (pg/ml)	421	459	387	478	386	0.30
	(234, 701)	(281, 588)	(224, 690)	(288, 842)	(248, 502)	
hs-CRP (mg/L)	1.5 (0.2, 4.4)	2.7 (1.2, 7.8)	1.8 (0.5, 6.2)	0.8 (0.2, 1.8)	2.6 (0.8, 10.3)	0.006

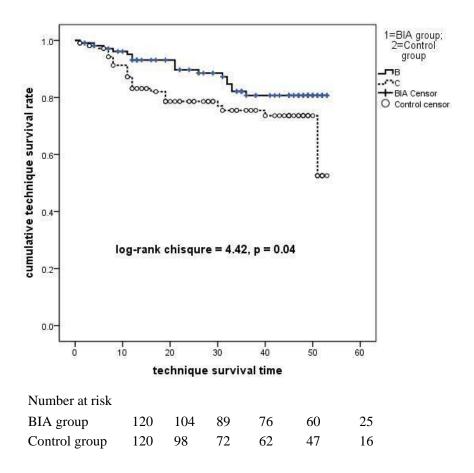
NT-proBNP (pg/ml)	4147	2993	4066	4788	12317	0.34
	(2106, 14188)	(1986, 9019)	(1419, 13145)	(1980, 14556)	(3620, 23102)	
PD dosage (L/d)	8 (8,8)	8 (8,8)	8 (8,8) *	8 (7,8)	8 (8,8)	0.72
Total Kt/v	2.3 ± 0.6	2.2 ± 0.7	2.1 ± 0.6 *	2.2 ± 0.5	2.2 ± 0.3	0.15
Total Ccr (L/w)	71 ± 25	63 ± 24	61 ± 17	62 ± 23	64 ± 15	0.14
nPCR	0.9 ± 0.1	0.8 ± 0.2	0.8 ± 0.1	0.8 ± 0.1	0.8 ± 0.2	0.26
Total body water (L)	37.1 ± 7.3	35.4 ± 7.1	40.0 ± 8.8 *	36.8 ± 7.7	38.6 ± 5.9	0.05
Extracellular water (L)	15.1 ± 3.2	14.8 ± 2.4	16.5 \pm 4.0 *	15.0 ± 3.4	16.1 ± 3.0	0.08
Intracellular water (L)	21.9 ± 4.3	21.1 ± 3.5	23.1 ± 6.3	21.8 ± 4.7	22.7 ± 3.4	0.31
Extracellular wate//total	40.4	41.0 **	41.0**	40.3	40.7*	0.008
body water (×10e2)	(40.1,41.1)	(40.4,41.9)	(40.4, 41.8)	(40.1, 40.9) *	(40.3, 41.2)	

Note: values for continuous variables are given as mean \pm standard deviation or median [interquartile range] . Post hoc multiple comparisons were conducted between "death, transfer to HD, transplant and drop-out" and "completers" respectively. *p < 0.05; **p < 0.01

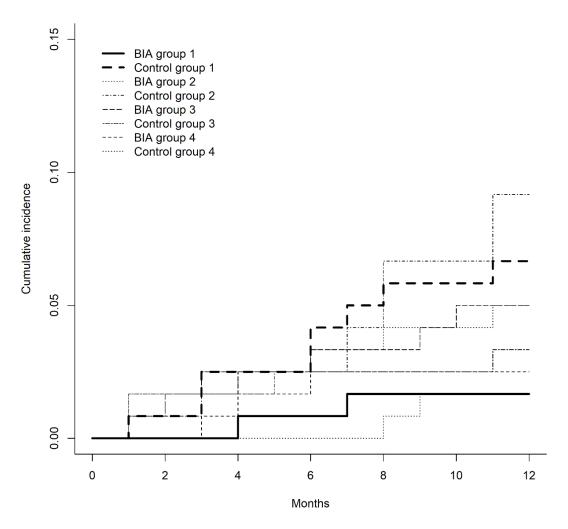
Abbreviations: BP, blood pressure; CVD, cardiovascular disease; NYHA, New York Heart association 1 as grade II, 2 as grade II, 3 as grade III; mGFR, measured glomerular filtration rate; iPTH, intact parathyroid hormone; hs-CRP, high-sensitivity C-reactive protein; NT-proBNP, N-terminal pro-natriuretic peptide; PD, peritoneal dialysis; Ccr, creatinine clearance; nPCR, normalized protein clearance rat.

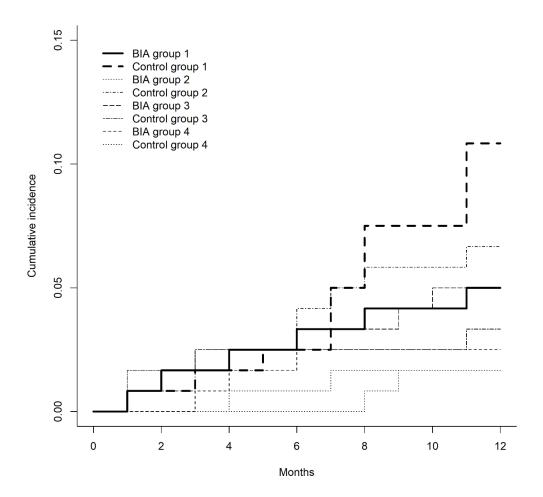

Supplemental Table 7 Cox regression analysis of groups associated with all-cause death and technique failure

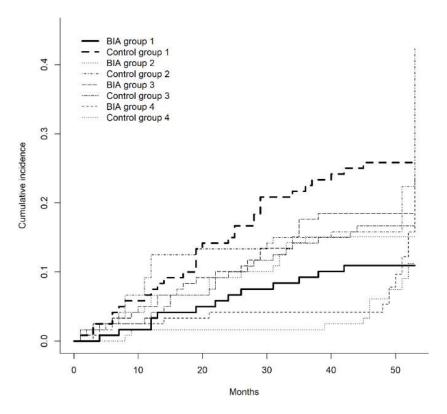
All-cause death					Technique failure			
Factors	Univariable		multivariable		univariable multivariable			
	HR (95%CI)	р	HR (95%CI)	p	HR (95%CI) p HR (95%CI) p			
At 1 year								
Group (BIA vs. control)*	2.71(0.72, 10.24)	0.14	2.27(0.59, 8.68)	0.23	1.95(0.94, 4.04) 0.07 1.73(0.83, 3.62) 0.14			
At 3 years								
Group (BIA vs. control)**	0.37(0.19, 0.72)	0.003	0.39(0.20, 0.76)	0.006	1.08(0.60, 1.93) 0.78 1.06(0.58, 1.91) 0.84			

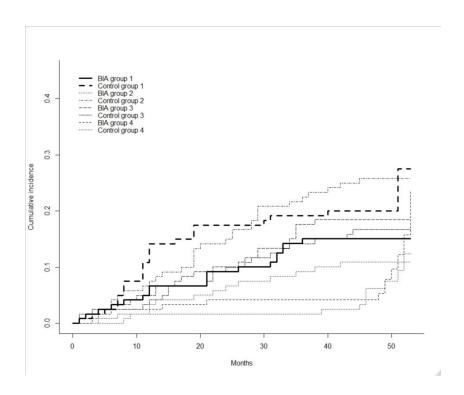

Abbreviation: BIA, bioimpedance analysis; CVD, cardiovascular disease; SBP, systolic blood pressure

^{*} Adjusted by NYHA classification


^{**} Adjusted by systolic BP, NYHA classification, hemoglobin (g/L), and ECW/TBW ratio


Supplemental Figure 1 Kaplan Meier curve of comparison of the BIA group and the control group in terms of patient survival based on per-protocol population (excluded: poor adherence to treatment regimen = 22; main indicator missing at baseline = 0; taking prohibited drugs = 0)


Supplemental Figure 2 Kaplan Meier curve of comparison of the BIA group and the control group in terms of technique survival based on per-protocol population (excluded: poor adherence to treatment regimen = 22; main indicator missing at baseline = 0; taking prohibited drugs = 0)


Supplemental Figure 3 Competing risk analysis on 1-year survival Cumulative incidence plot of the event and competing events, in which 1 = transfer to HD (technique failure), 2 = death, 3 = transplantation, 4 = withdraw due to poor adherence.

Supplemental Figure 4 Competing risk analysis on 1-year technique survival Competing events recorded as censor in the database are "0 = complete trial, 1 = transfer to HD (technique failure), 2 = death, 3 = transplantation, 4 = withdraw due to poor adherence".

Supplemental Figure 5 Competing risk analysis on 3-year survival Cumulative incidence plot of the event and competing events, in which 1 = transfer to HD (technique

Supplemental Figure 6 Competing risk regression of 3-year technique survival Competing events recorded as censor in the database are "0 = complete trial, 1 = transfer to HD (technique failure), 2 = death, 3 = transplantation, 4 = withdraw due to poor adherence".

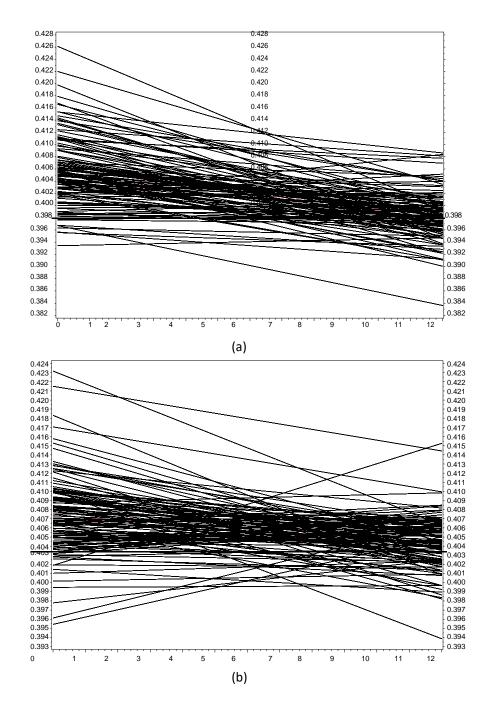


Figure 7 Comparison of the decline rate of the ECW/TBW ratio by 0.001 unit (per month) in the BIA and control group through one year intervention after multiple imputation (a) BIA group; (b) control group.

Supplemental Appendix 1

The sample size estimation was based on Log Rank Test Power Analysis of Numeric Results in Terms of Sample Size when the Test was Two-Sided using PASS software 11.0. The per-group sample size required for BIA-guided fluid management to show a significant increase (10%) in one year in patient survival (power of 90%, α error of 0.05) was calculated using a significance test. Surviving rates in BIA group and control group were set as 85%[17,18] and 95%[19-21], separately. The necessary sample size was 108 for each group as per the equal-sample-size bunch design. Allowing for a 10% drop out rate, the total sample size required was 240. The trial was extended to 3 years follow-up based on 1-year analysis for the following reasons: first, we found there were differences in both patient survival (96% and 90%) and technique survival (95% and 89%) during 1year follow-up time (Fig 2-a, b, c), although no significant statistical difference was found; second, 1-year patient survival rate of BIA group and control group were 96% and 90% respectively, which was higher than the patient survival we used to calculate sample size with 1-year observation time (95% and 85%). Therefore, the number of events for the primary endpoint (death) by the end of one year was 11 which was much less than we assumed at initial design (24 cases). Therefore, we extended to 3-year follow up in order to get more events to show the difference of long-term survival.

Supplemental Appendix 2

The primary outcome for the survival analysis was a recorded event of "patient death" coded as 1. Competing events included kidney transplantation coded as 2, transfer to HD as 3, loss to follow-up as 4. Those who completed the trial and did not die by the end of follow up was censored. To evaluate the association of intervention group and transfer to HD (i.e. technique failure), competing events in the model were defined as "death coded as 2, transplantation as 3, and withdraw due to poor adherence as 4". Those who completed the trial and did not die by the end of follow up was censored. Analysis was performed by the package of cmprskin R software.