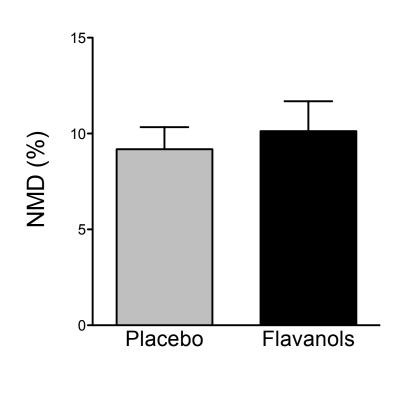
1	Online-Only Supplement
2	
3	Vasculoprotective effects of dietary cocoa flavanols in hemodialysis patients: a
4	double-blind, randomized, placebo-controlled trial
5	
6	Tienush Rassaf, MD ¹ *; Christos Rammos, MD ¹ *; Ulrike-B. Hendgen-Cotta, PhD ¹ ;
7	Christian Heiss, MD ¹ ; Werner Kleophas, MD ² ; Frank Dellanna, MD ² ; Jürgen. Floege, MD ³ ;
8	Gerd R. Hetzel, MD ² ; Malte Kelm, MD ^{1,4}
9	
10	
11	
12	

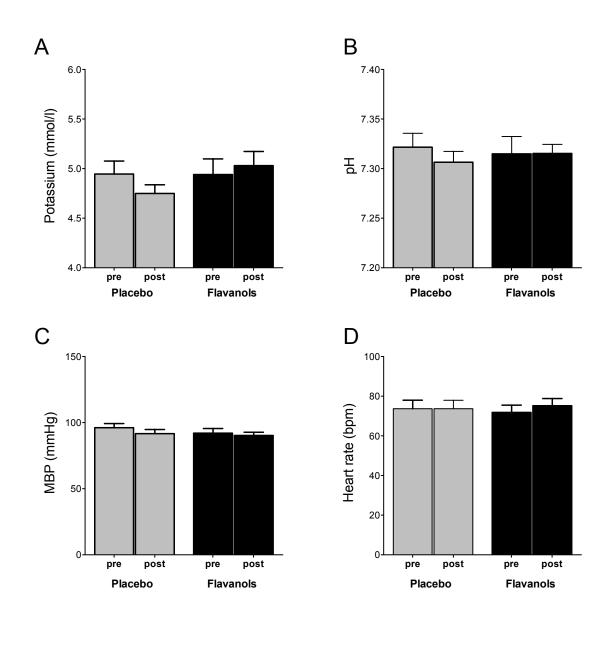
Methods

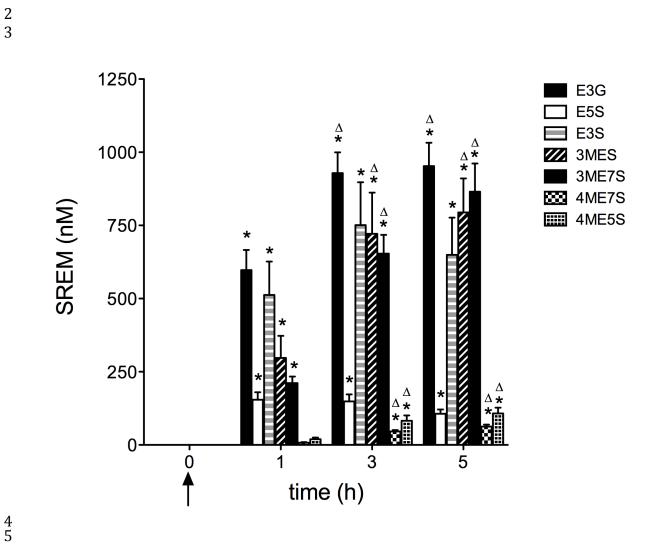
2	
3	For the determination of vascular functions (FMD and PWV) participants were required
4	to fast at least 5 hours prior to the measurements. Comparisons using area-under the curve
5	were conducted using Prism 5.0 (GraphPad) calculating the total peak area of FMD for each
6	timepoint assessed (before, during and after HD) for the acute and acute-on chronic study,
7	respectively.
8	Brachial blood pressure (BP) was measured in duplicate in the non-fistula arm by cuff
9	and mercury sphygmomanometer after the participant had rested in a seated position for 10
10	min and the average of the 2 measurements was recorded.
11	After the participants had rested for 10 minutes we determined arterial stiffness by
12	PWV. PWV was calculated from sequential recordings of electrocardiogram referenced
13	carotid and femoral pressure waveforms obtained by using tonometry with the SphygmoCor
14	device and transducer (AtCor Medical, Sydney, Australia). Wave transit-time was determined
15	using the distance between carotid and femoral sites estimated from the distance between
16	each artery location, the sternal notch and the R-wave of a simultaneously recorded
17	electrocardiogram as reference frame (1).
18	Carotid intima-media thickness (IMT) was determined using high-resolution ultrasound
19	(Vivid i ultrasound, GE Healthcare, Munich Germany). IMT was measured 1 cm distal the
20	carotid bifurcation using end-diastolic (minimum dimension) images of the far wall of the
21	distal common carotid artery.
22	Blood was drawn for clinical routine and the Institute of Clinical Chemistry and
23	Laboratory Diagnostics, University Hospital Duesseldorf performed all analyses unless noted
24	otherwise. (-)-Epicatechin and its related metabolites in plasama and dialysate fluid were
25	determined by HPLC-FLD/UV and electrochemical detection using authentic standards
26	provided by Mars Symbioscience, as described (2). Plasma nitrite and nitrate were

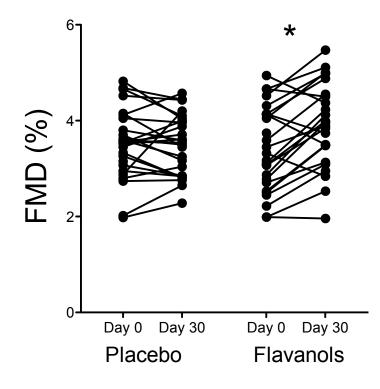
1	determinded by HPLC technique (Eicom, Eno-20), as described (3,4). The advanced
2	glycation end product Carboxymethyl Lysine (CML, microcoat, Bernried, Germany), markers
3	of inflammation hs-Interleukin 6 (IL-6, eBioscience, Vienna, Austria) and oxidative Stress
4	oxidized LDL, OxLDL, Mercodia, Uppsala, Sweden) were measured by ELISAs following
5	the manufacturers protocol, respectively.
6	
7	
8	
9	

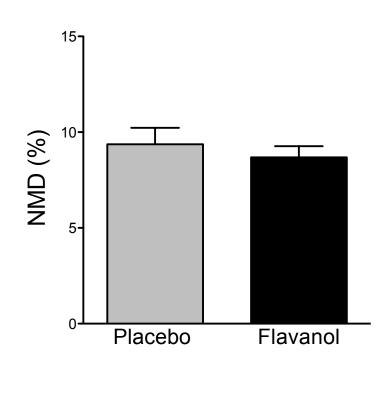
1 Tables


Supplemental Table 1: Inclusion and Exclusion Criteria.


Inclusion Criteria:	Exclusion Criteria
end stage renal disease	acute renal failure
>18 years	acute infection
chronic intermittent hemodialysis	heart failure (NYHA IV)
	pregnancy
	anuria


Supplemental Table 2: Test drink composition and nutritional information.


Total Daily Intake	CF	Placebo
Fotal cocoa flavanols (mg)	900	ND
(-)-Epicatechin	128	ND
(+)-Catechin	4	ND
(-)-Catechin	14	ND
(+)-Epicatechin	ND	ND
Total calories (kcal)	50	50
Total fat (g)	0	0
Stearic acid (g)	0	0
Total carbohydrates (g)	12	12
Sugars (g)	0.4	0.2
Protein (g)	0.2	0.2
Fiber (g)	1.2	0.8
Sodium (mg)	6	6
Potassium (mg)	190	170
Magnesium (mg)	2	2
Caffeine (mg)	20	12
Theobromine (mg)	88	92


n		10
Male n		9
Age (years)		64.1 ± 9.5
Weight (kg)		87.9 ± 9.9
Body mass index	(kg/m ²)	28.9 ± 1.4
Renal diagnosis (n)	
	Hypertensive/large vessel	2
	Diabetic nephropathy	3
	Polycystic kidney disease	1
	Glomerulonephritis	2
	Other/miscellaneous	2
Dialysis vintage ((m)	16 (12, 46)
Hypertension (n)Diabetes (n)Current smoker (n)Hypercholesterinaemia (n)CVD (n)		10
		4
		3
		3
		2
Medication (n)	ASS	5
	Statin	6
	AT blocker	3
	ACE-I	4
	b blocker	6
	Ca-channel blocker	2
	Diuretics	10

1	Figure Legends
2 3	Supplemental Figure 1. Acute study: Endothelial independent function in patients with
4	ESRD.
5	No effect for Nitroglycerin-mediated vasodilation (NMD) i.e., endothelium-independent
6	vasodilation in ESRD patients following acute ingestion of CF or placebo, n=5.
7	
8	Supplemental Figure 2. Baseline acute study: Acute effect of dietary flavanols on clinical
9	routine and hemodynamics in patients with ESRD.
10	No effect on potassium and pH values (A) and (B) or mean blood pressure (MBP) and heart
11	rate (C) and (D) in CF group vs. placebo. *p<0.05, n=10, Data are given as mean \pm SEM.
12	
13	Supplemental Figure 3. Baseline acute study: Plasma epicatechin metabolites in ESRD
14	after a singular ingestion of flavanols.
15	Plasma concentration of structurally-related epicatechin metabolites (SREM) in end-stage
16	renal disease patients, with CF ingestion at 0 hr. SREM quantified corresponds to epicatechin-
17	3'-b-D-glucuronide (E3G), (-)-epicatechin-3'-sulfate (E3S), (-)-epicatechin-5-sulfate (E5S),
18	3'-O-methyl(–)-epicatechin-5-sulfate (3MES), 3'-O-methyl(–)-epicatechin-7-sulfate
19	(3ME7S), 4'-O-methyl(-)-epicatechin-5-sulfate (4ME5S) and 4'-O-methyl(-)-epicatechin-7-
20	sulfate (4ME7S). Data are expressed in nM (nmol of SREM/L of plasma). *denotes p<0.05
21	compared to baseline, $^{\Delta}$ compared to 1 hr value after CF ingestion, n=10.
22	
23	
24	
25	

1	Supplemental Figure 4. Chronic study: Chronic effects of dietary flavanols in patients
2	with ESRD.
3	Chronic effect on endothelial function following a 30-day ingestion period of CF or placebo
4	(FMD, flow-mediated dilation). *denotes p<0.05
5	
6	Supplemental Figure 5. Chronic study: Endothelial independent function in patients
7	with ESRD.
8	No effect for Nitroglycerin-mediated vasodilation (NMD) i.e., endothelium-independent
9	vasodilation in ESRD patients following chronic ingestion of CF or placebo, n=7-9.
10	
11	

1		References
2 3 4	1.	Rammos C, Hendgen-Cotta UB, Sobierajski J, Adamczyk S, Hetzel GR, Kleophas W, Dellanna F, Kelm M, Rassaf T: Macrophage migration inhibitory factor is associated with vascular dysfunction in patients with end-stage renal disease. <i>Int J Cardiol</i> 168: 5249-5256, 2013
5 6 7	2.	Ottaviani JI, Momma TY, Kuhnle GK, Keen CL, Schroeter H: Structurally related (-)-epicatechin metabolites in humans: assessment using de novo chemically synthesized authentic standards. <i>Free Radic Biol Med</i> 52: 1403-1412, 2012
8 9 10	3.	Hendgen-Cotta UB, Luedike P, Totzeck M, Kropp M, Schicho A, Stock P, Rammos C, Niessen M, Heiss C, Lundberg JO, Weitzberg E, Kelm M, Rassaf T: Dietary nitrate supplementation improves revascularization in chronic ischemia. <i>Circulation</i> 126: 1983-1992, 2012
11 12 13 14	4.	Rammos C, Hendgen-Cotta UB, Sobierajski J, Bernard A, Kelm M, Rassaf T: Dietary nitrate reverses vascular dysfunction in older adults with moderately increased cardiovascular risk. <i>J Am Coll Cardiol</i> 63: 1584-1585, 2014
15 16 17	1.	Rammos C, Hendgen-Cotta UB, Sobierajski J et al. Macrophage migration inhibitory factor is associated with vascular dysfunction in patients with end-stage renal disease. <i>Int J Cardiol</i> . 2013;168(6):5249-5256.
18 19 20	2.	Ottaviani JI, Momma TY, Kuhnle GK, Keen CL, Schroeter H. Structurally related (-)-epicatechin metabolites in humans: assessment using de novo chemically synthesized authentic standards. <i>Free Radic Biol Med</i> . 2012;52(8):1403-1412.
21 22	3.	Hendgen-Cotta UB, Luedike P, Totzeck M et al. Dietary nitrate supplementation improves revascularization in chronic ischemia. <i>Circulation</i> . 2012;126(16):1983-1992.
23 24 25 26	4.	Rammos C, Hendgen-Cotta UB, Sobierajski J et al. Dietary nitrate reverses vascular dysfunction in older adults with moderately increased cardiovascular risk. <i>J Am Coll Cardiol</i> . 2014;63(15):1584-1585.