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Supplemental Figure Legend

Figure S1: Cross-Validated AUC Across Different algorithms. Comparison of different machine learning 

algorithms using 10-fold cross-validation on the training data. The two most adaptive algorithms, 

LASSO and Random Forests perform best.

Figure S2: Cross-Validated AUC across different Ratios Cases to Controls. Comparison of ratios of 

cases to controls using 10-fold cross-validation on the training data. Adding extra controls does not 

improve overall model performance. 



Technical Appendix

Machine learning (ML) is an increasingly popular tool in medical statistics. While traditional statistics 
requires the pre-specification of a working model (as in regression analysis) ML is a field of statistics 
that uses an algorithmic approach to search for the best data model. ML algorithms differ based on how 
they approach this search and what their underlying fitting process consists of, referred to as basis 
functions. The best algorithm for a particular data problem will depend on how these basis functions 
capture the true underlying relationship. 

ML approaches have both strengths and limitations over traditional regression models. The primary 
strength is that they do not require the user to pre-specify the relationship between the predictor 
variables and the outcome. For example, in the given data problem it was known that clinical factors 
like blood pressure were likely related to sudden cardiac death, but the exact nature of the relationship 
was not known a priori. A ML approach allows for various non-linear effects to be modeled. In doing 
so, the hope is that a better approximation of the “true model” is found. Such flexibility is often not 
possible within regression models. The cost of such flexibility is that any fit is likely to be an overfit. 
This is why it is necessary to use cross-validation procedures or in our case sample splitting. Moreover, 
since ML algorithms are often non-parametric (very general functions), it is generally not possible to 
estimate the “effect” (Beta value) of a predictor on the outcome. However many procedures have 
adhoc ways of defining variable importance.

For scientific questions where the goal is to predict an outcome from a set of variables and effect 
estimation is not of primary importance, ML can be very useful. In this paper we utilized the ML 
algorithm Random Forests, introduced by Leo Breiman in 20011. Figure S3 presents a schematic of RF. 
At its core it consists of a series of decision trees. Decision trees have been popularized by the ML 

Figure S3: Schematic of the Random Forests Procedure

algorithm CART 2. CART is a recursive algorithm that represents data in a tree structure via a series of 
binary splits (Figure S4). The algorithm searches over all possible cut points of all available variables 
for the optimal split. The optimal split is chosen based on the minimization of a pre-specified loss 
function. In the example shown (simulated data), two predictor variables are represented: systolic blood 
pressure (SBP) and diastolic blood pressure (DBP). The outcome here is binary (e.g. death). The first 
split is on SBP. If a person has SBP >  163.9 they move down the right side of the tree and 97% of 
these people eventually die. If one's SBP < 163.9 they move down the left side of the tree. The next 



split is also SBP. Among people with SBP < 148.6 only 1% of people die. If one's SBP > 148.6 (but less 
than 163.9) the next split to consider is DBP. 5% of people with DBP < 70.83 die while 70% above die. 
This toy example illustrates how trees represent a complex relationship, particularly non-linear or 
interaction effects. Moreover, a CART tree can serve as a predictor for a future observation. To predict, 
one simply passes a person down the tree and observes which terminal node they land in. For example, 
a person with SBP of 150 and DBP of 60 would fall in the second terminal node and have a predicted 
probability of death of 5%.

Figure S4: A sample decision tree 
with SBP and DBP as predictors.

RF is an extension of CART, where instead of “growing” one tree, one grows many trees. In our 
analysis we grew 2,000 such trees. The number of trees to grow is referred to as a “tuning parameter.” 
Some analyses may require fewer trees while others may require more (see Goldstein et al. 3  for 
discussion of the different tuning parameters and how to select them). Since growing a tree is a 
deterministic process, RF injects randomization into the process by selecting bootstrap samples of the 
data at each iteration and by searching over only subset of the variables at each node. This produces 
enough variability in the trees, that once combined together create a more stable and robust predictor 
(see 3 for more theoretical justification). One additional advantage of the bootstrapping process is that 
in each iteration a subset of the data is left out (approximately 37%). The “out-of-bag” sample serves as 
an independent validation set for the given tree. Over the “forest” of trees this allows for a measure of 
fit, similar to cross-validation.

While RF results in a better predictor, the cost is a more obscured model. It is easy to interpret one tree 
but it is much harder to interpret multiple trees. To aid in the identification of important variables, 
various metrics have been proposed. The most common metric, and that used in our paper, is the 
permutation importance. Conceptually, the permutation importance measures the importance of a 
variable to the prediction model. After the “forest” of trees is created, each predictor variable is 
permuted. The observed decrease in prediction accuracy is the permutation importance. This 
importance measure does not have any real-world interpretation (like a Beta value would in a 
regression model) and to this point there are not even any statistical tests. However, it does provide a 
relative ranking of which variables are most important.



In our analysis a series of RF models were fit. For each model, we grew 2,000 trees. This value was 
chosen based on minimization of the out-of-bag error rate. The other primary tuning parameter is the 
number of variables to search over at each node. The standard value is the square-root of the number of 
predictors. We used this value, also after exploring the out-of-bag error rate. Other tuning parameters 
were similarly chosen. For variable importance we used the permutation importance and examined the 
top 6 variables. This was an arbitrary choice though further examination did not change the overall 
impression of important variables.
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