The Patient as a Limit to Dialysis Technology

Sunny Eloot, Raymond Vanholder, Wim Van Biesen, and Norbert Lameire


Ward et al. show in this issue of CJASN that Kt/V urea does not improve by increasing the dialysate flow rate in dialyzers in which dialysate flow distribution has been optimized by changes in design (1). Such improved dialyzer designs were developed during the last decade, based on the awareness that poor dialysate flow distribution and the occurrence of preferential dialysate flow paths negatively influenced dialyzer performance (2,3). Improvements mainly consisted in the use of undulated fibers (4), spacer yarns (5,6), and/or increased fiber packing density (7).

To have an idea about dialyzer performance, Michaels defined a patient-independent parameter, i.e., the product of the mass transfer coefficient (K0) and the membrane surface area (A). This K0A is a function of dialyzer clearance, K, blood and dialysate flow rate, and is assumed to be constant for a given dialysate-solute combination (8). However, in clinical practice, the patient-dependent parameter, Kt/V, is most commonly used to indicate dialysis dose in a single treatment. Formulae are available to calculate Kt/V for urea based on the assumption of a single-pool urea model (spKt/V) (9), a double-pool model accounting for a concentration equilibration among the compartments (eKt/V) (10), or by measuring the ionic dialysance (i.e., the purely diffusive clearance) and calculating the distribution volume from anthropometric data (Kt/VVD) (11). To get the target value for Kt/V urea, as recommended by different guidelines (12,13), the focus has been on the maximization of the dialyzer clearance K, since little can be done to change urea distribution volume V, and not much flexibility is available in patients in in-center facilities to prolong treatment time t. Hence, manufacturers are constantly working on the development of new dialyzer designs that should result in higher clearances, K, and associated higher K0A values.

Although Michaels (8) initially assumed K0A being constant, subsequent in vitro as well as clinical studies in “nonimproved” dialyzers showed that K0A increased by 14.7% and 6.7% when dialysate flow was increased from 500 to 800 ml/min, respectively (14,15). This resulted in the use of higher dialysate flow rates to maximize the dialysis dose. Bhimani et al. (7) from the same group of the study presented in this issue, previously showed that K0A no longer increased for higher dialysate flow rates in dialyzers with undulated fibers. Hence, if dialysate flow was increased from 600 up to 800 ml/min with a blood flow rate of 400 ml/min and a hematocrit of 35%, the Michaels equation would predict a clearance increase of only 4%. In the present paper, Ward et al. (1) explored whether the delivered clearance and Kt/V would, as for the predicted ones, not produce a significant increase when enhancing the dialysate flow rate from 600 to 800 ml/min.

To test this hypothesis, in a multicenter randomized clinical trial in 42 patients, the authors compared the delivered single-pool Kt/V as well as the equilibrated and ionic Kt/V at a dialysate flow rate of 600 versus 800 ml/min. Each patient underwent either an ABAB or a BABA protocol whereby A and B represented three consecutive dialysis sessions with dialysate flows of 600 or 800 ml/min, respectively. All treatments were performed with Polyflux Revaclear or Revaclear MAX dialyzers (Gambro, Lund, Sweden), which are characterized by both fiber undulations and increased fiber-packing density.

Although the delivered Kt/V urea differed significantly among centers, single-pool, equilibrated, and ionic Kt/V were similar for different dialysate flow rates, regardless of the dialyzers: ABAB or BABA (see Table 1). The measured ionic dialysance, however, which is a pure measure of dialyzer performance, was significantly higher for a dialysate flow rate of 800 ml/min compared with that with 600 ml/min (see Table 1).

As stated by the authors, reducing or at least avoiding an increased dialysate flow has an important economic impact, allowing a reduction in water consumption by 25%. The use of lower dialysate flow rates is of particular interest during nocturnal home hemodialysis, reducing not only the costs for electricity and water consumption, but also avoiding the need to wake up during the night to exchange dialysate concentrate bags. This certainly ameliorates the quality of sleep and thus quality of life. Furthermore, as the need for water will increase in the years to come, also an ecological dimension might be added to the economical considerations.

Besides these positive findings, it should be remarked that Ward et al. were only focusing on urea, which is biologically relatively inert (16) and not very representative for other compounds with different kinetic behavior (17,18). Neither the HEMO in hemodialysis (19) nor the ADEME study in peritoneal dialysis (20) showed in this issue, previously showed that K0A no longer increased for higher dialysate flow rates in dialyzers with undulated fibers.
middle molecules like behavior of most uremic retention solutes. In this context, body” cannot follow, due to the multicompartmental be-
that the dialyzer can still be improved, but that “the human (8). Although limited, this variation in dialysance shows
dialysance (Table 1), comparable to the 4% difference in
flows of 600 and 800 ml/min, there was a 3% difference in
removal and should be confirmed by studying the removal
of other solutes with a more complex compartmental be-
pronounced for solutes with a larger distribution volume,
e.g., methylguanidine and phosphate (24,25), or for solutes
with a high resistance against their intercompartmental
shifts such as β2-microglobulin (24). This finding was,
however, not confirmed for the protein-bound solutes (26).
Of note, prolonged dialysis improves left ventricular mass,
an important outcome parameter (27). Also Ward et al. show that longer dialysis even with subtle differences in
dialysis time (210 minutes in center 1 compared with 224
minutes in center 2) resulted in a significantly higher Kt/V,
even with a smaller processed blood volume during the
longer session (89.6 L versus 94.5 L) (1).
Increasing dialysis frequency, while keeping total treat-
ment time constant, has only some impact on dialysis
adequacy for solutes distributed in a small volume (25).
Remarkably, daily dialysis decreased the concentration of
protein bound solutes (28), and outcome improved with
more frequent dialysis (29).
A restriction to a more widespread use of those frequent
and prolonged regimens is the relatively tight restraint
upon dialysis times in in center hemodialysis. In this way,
home hemodialysis or night self-dialysis can offer more
flexibility and better-tailored schemes in function of the
needs of the patient, while at the same time offering more
dialysis adequacy.
In conclusion, the study of Ward et al. (1) clearly dem-
strates no impact on dialysis adequacy of increasing the
dialysate flow rate in dialyzers even with an improved
design. Although the findings were purely based on urea
removal and should be confirmed by studying the removal
of other solutes with a more complex compartmental be-
havior, improved dialyzer designs may be associated with
a significant economical and ecological beneficial impact
and higher quality of life for the patient dialyzing at home.

Disclosures
None.

dialysis (20), both randomized controlled trials, could
demonstrate an improvement in outcome by increasing
Kt/V urea above the standards as currently prescribed by
guidance bodies (12,13). Because urea moves relatively
easily from one compartment to the other and its multi-
compartmental behavior is relatively limited, it is very
unlikely that more significant results would have been
obtained with other solutes with more complex kinetic
behavior, such as protein-bound compounds or middle
molecules. Nevertheless, such an analysis might be worth-
while in the future, especially when other adequacy pa-
rameters, such as the postrebound reduction ratio and
solute removal in spent dialysate, also could be taken into
account.

Nevertheless, based on the available data on urea kinet-
ics, the study by Ward et al. shows that continuous tech-
nical advances in dialysis devices during the last decades
have improved the quality of such devices to such a level
that a further increase of the traditional parameters will
have no significant impact anymore on dialysis adequacy,
at least as calculated as Kt/V urea (16). Likewise, the
additional impact of convective ultrafiltration and substi-
tution with the latest version of high-flux membranes be-
comes less important, as the molecular weight of the larger
peptides (so-called middle molecules) became more im-
portant (21).

Remarkably enough, although there was in the study by
Ward et al. (1) no difference in Kt/V urea between dialysate
flows of 600 and 800 ml/min, there was a 3% difference in
dialysance (Table 1), comparable to the 4% difference in
clearance as would be predicted by the Michaels equation
(8). Although limited, this variation in dialysance shows
 that the dialyzer can still be improved, but that “the human
body” cannot follow, due to the multicompartmental
behavior of most uremic retention solutes. In this context,
urea as a marker offers a best-case scenario. Although
middle molecules like β2-microglobulin distribute over at
least two compartments (22,23) and the shift from the
extravascular to the intravascular compartment is ham-
pered, even several guanidino compounds, molecules of a
similar metabolic origin as urea and with similar molecular
weights and absent protein binding, are distributed over
distribution volumes that are up to three times as large as
that of urea (17,18).

One might thus conclude that a maximum performance
with the traditional dialytic approaches has been reached.
If the aim is to further increase toxin removal, probably
other options should be considered such as prolonged or
more frequent dialysis sessions or a combination of both.

Increasing dialysis time, without changing the total
blood or dialysate volume crossing the dialyzer per ses-
ion, markedly increased removal into the dialysate with-
out changing Kt/V urea (24). This phenomenon is most
pronounced for solutes with a larger distribution volume,
e.g., methylguanidine and phosphate (24,25), or for solutes
with a high resistance against their intercompartmental
shifts such as β2-microglobulin (24). This finding was,
however, not confirmed for the protein-bound solutes (26).

Of note, prolonged dialysis improves left ventricular mass,
an important outcome parameter (27). Also Ward et al. show that longer dialysis even with subtle differences in
dialysis time (210 minutes in center 1 compared with 224
minutes in center 2) resulted in a significantly higher Kt/V,
even with a smaller processed blood volume during the
longer session (89.6 L versus 94.5 L) (1).

Increasing dialysis frequency, while keeping total treat-
mall time constant, has only some impact on dialysis
adequacy for solutes distributed in a small volume (25).
Remarkably, daily dialysis decreased the concentration of
protein bound solutes (28), and outcome improved with
more frequent dialysis (29).

A restriction to a more widespread use of those frequent
and prolonged regimens is the relatively tight restraint
upon dialysis times in in center hemodialysis. In this way,
home hemodialysis or night self-dialysis can offer more
flexibility and better-tailored schemes in function of the
needs of the patient, while at the same time offering more
dialysis adequacy.

In conclusion, the study of Ward et al. (1) clearly dem-
strates no impact on dialysis adequacy of increasing the
dialysate flow rate in dialyzers even with an improved
design. Although the findings were purely based on urea
removal and should be confirmed by studying the removal
of other solutes with a more complex compartmental be-
havior, improved dialyzer designs may be associated with
a significant economical and ecological beneficial impact
and higher quality of life for the patient dialyzing at home.

Disclosures
None.

Table 1. Different adequacy parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dialysate Flow</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600 ml/min</td>
<td>800 ml/min</td>
</tr>
<tr>
<td>spKt/V</td>
<td>1.66 ± 0.25</td>
<td>1.63 ± 0.21</td>
</tr>
<tr>
<td>eKt/V</td>
<td>1.37 ± 0.20</td>
<td>1.35 ± 0.18</td>
</tr>
<tr>
<td>Ionic dialysance</td>
<td>250 ± 17</td>
<td>257 ± 19</td>
</tr>
<tr>
<td>(ml/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kt/VID</td>
<td>1.46 ± 0.24</td>
<td>1.49 ± 0.35</td>
</tr>
</tbody>
</table>

spKt/V, single-pool Kt/V; eKt/V, equilibrium Kt/V.

a − , disadvantage; +, advantage of using this adequacy parameter.
b P < 0.05 for 800 versus 600 ml/min.
References


Published online ahead of print. Publication date available at www.cjASN.org.