The evolution of patients with IgA nephropathy (IgAN) varies greatly, and predictive tools are needed to assess confidently the risk for progression. Although in many studies clinical risk factors such as hypertension and proteinuria have consistently been linked to outcome, the independent value of pathology remains debated. Pathologists have developed a number of classifications over the years, at times with seemingly conflicting results. In 2009, the International IgA Nephropathy Network Group, working in collaboration with the Renal Pathology Society, proposed a set of four predictive renal biopsy findings independent of clinical assessment, the MEST score (M, mesangial hypercellularity; E, endocapillary proliferation; S, segmental glomerulosclerosis/adhesion; T, tubular atrophy/interstitial fibrosis) (1,2). This study differed from previous classification by using a stepwise methodology initially considering all plausible variables, subsequently eliminating those with poor reproducibility, avoiding highly collinear biopsy findings, testing their univariate predictive value and, finally, adjusting for clinical risk factors of progression. It also simultaneously considered two important, albeit different, outcomes: The rate of renal function decline and the survival from a 50% reduction of renal function or renal failure. Despite this meticulous approach, certain limitations were unavoidable. Its retrospective design and uncontrolled treatment allocation seemed similar. Certain differences in the study populations have surfaced. Mesangial and endocapillary hypercellularity was present in 81% and 42% in the Oxford cohort, respectively, as opposed to 21% and 14% in this study. The validation cohort was 13 years older without children, and the initial proteinuria was 1.24 g/d as opposed to 1.7 g/d originally. Finally, 13 and 12 patients presented with stages 4 and 5 chronic kidney disease (CKD), respectively. Treatment allocation seemed similar.

Clinicopathologic correlations mirrored those found in the Oxford study with the notable exception of the M lesion showing no relation with proteinuria. The E, S, and T lesions also predicted the survival from a combined event by univariate analysis, but none remained significant when adjusting for clinical variables. In the multivariate model, only baseline eGFR was a positive predictive factor for doubling of serum creatinine or ESRD. Interestingly, proteinuria and BP also failed to predict survival independently from a combined event when factoring in the initial eGFR. Both were strongly associated with outcome univariately, as expected. Table 3 offers a glimpse of the important collinearity between tubulointerstitial disease and eGFR when the hazard ratio for the T lesion jumps from 1.24 to 5.11 when eGFR is removed from the equation. The original study also showed this attenuation, to a lesser extent, perhaps having excluded patients with stages 4 and 5 CKD. Using the rate of renal function decline (slope) as an outcome allows the impact of the initial eGFR that weights strongly on renal survival analyses to be distinguished. However, estimating the slope can be difficult and biased by a single outlier. Consistency using both outcomes offers reassurance.
The lack of independent value of the E, S, and T lesions must be carefully interpreted. Validation studies typically include fewer patients and are expected to show a similar signal compared with the original study without necessarily duplicating every result (5). Two additional features here may have influenced statistical power. The initial eGFR varied considerably, and patients included in the Oxford study presented with more frequent mesangial and endocapillary hypercellularity than in the present one. This study does offer interesting insight as to whether the Oxford classification can be extrapolated to those with more advanced CKD, with fewer proliferative lesions and lower proteinuria. In this study, 25 patients had an eGFR \(\leq 30 \text{ ml/min per 1.73 m}^2 \) and perhaps in such patients, the M, E, S, and T lesions offer less predictive value. Interestingly, the M lesion was less frequently associated with this form of treatment.

The inability to produce a classification that applies to every individual may seem disappointing. However, when examined closely, the excluded patients from the Oxford study do present unique distinguishing features. Those with consistently low proteinuria do not progress, patients with advanced scarring and little proliferation rarely benefit from immunosuppression and, finally, crescentic IgAN is approached clinically like a vasculitis. Such is the diversity of IgAN. A close parallel can be drawn with lupus nephritis. Coincidentally, multiple pathologic classifications in lupus have been proposed and debated, but none have been derived using a stepwise approach, yet.

Disclosures

None.

References

See related article, “The Use of the Oxford Classification of IgA Nephropathy to Predict Renal Survival,” on pages 2384–2388.