Feasibility and Impact of the Measurement of Extracellular Fluid Volume Simultaneous with GFR by 125I-Iothalamate

Folkert W. Visser,* Jaap H. J. Muntinga,† Rudi A. Dierckx,‡ and Gerjan Navis*

Departments of *Nephrology and †Nuclear Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands; and ‡Department of Medical Physiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands

The feasibility, validity, and possible applications of the assessment of extracellular fluid volume (ECFV) simultaneous with glomerular filtration rate (GFR) were assessed in a series of validation studies using the constant infusion method of 125I-iothalamate (IOT). In 48 subjects with a broad range of GFR, distribution volume (V_d) of IOT corresponded well with V_d bromide (16.71 ± 3.0 and 16.73 ± 3.2 l, respectively, not significant), with a strong correlation ($r = 0.933, P < 0.01$) and without systematic deviations. Reproducibility assessment in 25 healthy male subjects showed coefficients of variation of 8.6% of duplicate measurement of V_d IOT during strictly standardized (50 mmol Na$^+$/d) sodium intake. An increase in dietary sodium intake (200 mmol Na$^+$/d) induced a corresponding rise in V_d IOT of 1.11 ± 1.5 l ($P < 0.01$). In 158 healthy prospective kidney donors, the impact of indexing of GFR to ECFV was analyzed. Age, gender, height, and body surface area (BSA) were determinants of GFR. Whereas GFR, GFR/BSA, and GFR/height were gender-dependent, GFR/ECFV was gender-independent and not related to height or BSA. This supports the potential of normalizing GFR by ECFV. Thus, ECFV can be simultaneously assessed with GFR by the constant infusion method using IOT. After appropriate validation, also other GFR tracers could be used for such a simultaneous estimation, providing a valuable resource of data on ECFV in renal studies and, moreover, allowing GFR to be indexed to the body fluid compartment it clears: the ECFV.

The gold standard for measuring glomerular filtration rate (GFR) is by specific tracers, such as inulin, Cr-EDTA, iothalamate, and iohexol (1). Because the distribution volume (V_d) of these tracers for GFR ideally equal extracellular fluid volume (ECFV) (2–9), measuring GFR with such tracers could potentially be used for simultaneous assessment of ECFV.

Simultaneously measuring ECFV and GFR has several advantages. First, it will allow better insight into the (patho)physiologic and clinical role of ECFV in renal disease and its complications, such as hypertension and left ventricular hypertrophy. Second, it has been proposed that the best way to normalize GFR between different individuals would be by ECFV rather than by body surface area (BSA) (6,10,11). Whereas normalizing GFR for ECFV would be attractive from a theoretical perspective, it has not gained acceptance in practice because it is considered too cumbersome (12). Validation of GFR measurement protocols for simultaneous assessment of ECFV would greatly increase the feasibility of normalizing GFR for ECFV.

Various GFR tracers were used for measuring ECFV (2–9), but their validation, reproducibility, and calibration against a gold standard for ECFV are not well documented. In our center, accurate GFR measurement is performed as the clearance of 125I-iothalamate (IOT) by the constant infusion method, simultaneously with the determination of effective renal plasma flow (ERPF) (13). This renal function measurement is used in top-clinical care and for clinical research and allows estimating GFR with a day-to-day variability of only 2.5% (14). The aim of the current study was to validate this renal function protocol for assessing ECFV and to use the combined assessment for normalizing GFR to ECFV. To this purpose, we studied first, the agreement of V_d IOT with V_d of bromide, the golden standard for ECFV measurements, over a wide range of renal function. Second, we assessed the reproducibility of ECFV measurements by assessing V_d IOT under conditions of standardized sodium intake in healthy volunteers. Third, in these volunteers we tested the sensitivity of V_d IOT to detect a change in ECFV. Finally, we analyzed the impact of indexing GFR to ECFV in the above volunteers and in a cohort of 158 potential kidney donors.

Materials and Methods

All experiments were performed in adherence to the Declaration of Helsinki, approved by the Medical Ethics Committee of the University Medical Centre Groningen, and all participating subjects gave written informed consent for participation.

Measurement of Renal Function

Renal function measurements were performed using the constant infusion method with IOT and 131I-Hippuran as described before (13–15). After drawing a time point-0 blood sample, a priming solution...
containing 20 ml infusion solution (0.04 MBq of IOT and 0.03 MBq of 131I-Hippuran) plus an extra amount of 0.6 MBq of IOT is given at 08.00 h, followed by a constant infusion ranging from 6 ml/h in subjects with impaired renal function to 12 ml/h (based on previously known serum creatinine). Plasma concentrations of both tracers are allowed to stabilize during 1.5 h equilibration, which is followed by two 2-h periods for simultaneous clearances of IOT and 131I-Hippuran. The latter are calculated as (U*V)/P_iot and (U*V)/P_ipp, respectively. U*V represents urinary excretion of the tracer; P_iot, the infusion rate of the tracer, which equals clearance from plasma during steady state; P_ipp, tracer values in plasma at the end of each clearance period. The plasma clearance (P_iot) equals its urinary clearance because there is no extrarenal clearance of this tracer. Thus, when plasma levels are in steady state, ERPF equals P_iot. GFR is calculated as the urinary clearance of IOT, corrected for voiding errors: (U*V)/P_iot. As urinary clearance of 131I-Hippuran equals plasma clearance in case of perfect urine collection, we routinely use the ratio of plasma-to-urinary clearance of 131I-Hippuran to correct urinary clearance of IOT for voiding errors and dead space. By this method, coefficient of variation for GFR is 2.5% and for ERPF 5% (13).

Calculation of ECFV as V_d IOT

V_d IOT is calculated as: amount of IOT in the patient divided by P_iot during steady state. The amount of IOT in the patient is calculated as: [IOT infused − IOT excreted].

The latter is calculated as: [bolus + Sum (I*V)] − [urinary + extrarenal excretion of IOT]. Urinary excretion of IOT is measured as Sum (U*V), corrected for voiding errors as described above. Extrarenal excretion of IOT is calculated as described below.

Taken together, V_d IOT is calculated as: [(bolus + Sum (I*V)] − [Sum (U*V) + extrarenal excretion)]/P.

Calculation and Validation of Extrarenal Clearance of IOT

IOT is not exclusively cleared by the kidney, as some biliary excretion occurs as well. The latter is negligible when renal function is normal but is considerable in patients with impaired renal function (13,14,16). To calculate V_d IOT as proposed above, extrarenal clearance has to be accounted for. In our setup, extrarenal clearance can be calculated from the difference between plasma and urinary clearance. Extrarenal excretion of IOT (% of input) is calculated during steady state as: [(I*V) − (U*V)]/I*V * 100%. Subsequently, total extrarenal excretion is calculated as: %ER excretion [bolus + Sum (I*V)].

In the experiment calibrating V_d IOT against V_d bromide, we validated this calculation of extrarenal clearence of IOT.

Reproducibility and Sensitivity to Detect Changes in ECFV over Time

A total of 25 healthy normotensive men (age, 22.7 ± 2.6 yr) were studied. Renal function and ECFV were measured four times, on day 7 and day 14 of two 14-d study periods, with a washout of at least 3 wk in between. Each study period consisted of two 7-d periods with a different dietary sodium content, i.e., low sodium (50 mmol Na+/d) and high sodium diet (200 mmol Na+/d), in randomized order. Potassium intake was standardized at 80 mmol/d. Otherwise, the subjects continued their usual food habits. For assessment of dietary compliance, 24-h urine was collected at day 6 during each 7-d period. During all periods, subjects were ambulant and continued normal activities.

During study days, subjects reported at the research unit at 8:00 h, after having abstained from food and alcohol overnight. Height and body weight were measured, after which renal function and V_d IOT was assessed.

Reproducibility was assessed by examining repeated measurements under the same sodium intake for bias and calculating the coefficient of variation (COV). Bias was investigated by examining the mean difference between repeated estimates. The COV was calculated as the within-subject variation expressed as a percentage of the sample mean.

The averaged value of the duplicate measurements was further used to assess the sodium-induced change in ECFV. Additionally, creatinine-based renal function was calculated according to the simplified MDRD formula (19) and 24-h creatinine clearance. Creatinine in blood and urine were determined by Kodak Ektachem dry chemistry (Eastman Kodak, Rochester, NY), which was validated according to the Cleveland protocol.

Between-subjects Normalization of GFR by ECFV

We assessed the impact of normalization of GFR by ECFV in 158 healthy subjects screened as potential kidney donors (Table 1). In this population, we assessed the impact of normalization by ECFV on the difference in renal function between men and women. BSA was calculated according to DuBois and DuBois (20). Serum creatinine based renal function was calculated according to the simplified MDRD formula (19). To analyze the separate contributors to differences in GFR, we performed linear regression, with, respectively, GFR, GFR per 1.73 m² BSA, GFR/height, and GFR/ECFV as independent variables, and age and gender as dependent variables. BSA or height was added as independent variable when appropriate. GFR, GFR per 1.73 m² BSA, and GFR/height are expressed in ml/min, ml/min per 1.73 m² BSA, and ml/min per m, respectively. GFR/ECFV is expressed as %/h⁻¹, corresponding to the % of the ECFV that is cleared per hour. This unit follows from dividing ml/min (GFR) by ml (ECFV) * 60 (transforming min⁻¹ in h⁻¹) and * 100 (expression in %).
Data Analyses

Normally distributed data are expressed as mean \pm SD in text and tables and plotted as mean \pm SEM in figures. T test or paired t test was used for comparing means, and correlations were assessed as Pearson’s correlation coefficient. Analysis of variance was used to test whether steady-state levels of IOT were reached. Skewed distributed data were expressed as median with range; with subsequently using the Kruskal-Wallis test for subgroup comparisons. For analyzing the determinants of GFR, GFR/BSA, GFR/height, and GFR/ECFV, we built linear regression models with the mentioned variables as dependent variables and, when appropriate, adding age, gender, BSA, and height as independent variables by forward regression method. All analyses were performed using the Statistical Package SPSS 14.0.

Results

Calibration of Vd IOT against Vd bromide

In the experiments comparing Vd IOT and Vd bromide, the GFR of the 48 included subjects ranged from 20 to 147 ml/min (mean, 79 \pm 41 ml/min). After equilibration time, serum levels of IOT were 279 \pm 67, 279 \pm 76, 276 \pm 83, 280 \pm 90, and 284 \pm 97 counts/ml per min (analysis of variance, \(P > 0.9 \)), respectively, at 1.5, 2.5, 3.5, 4.5, and 5.5 hours after start of the protocol. Thus, plasma levels of IOT were in steady state, a prerequisite for calculation of ECFV during the constant infusion method. To validate the algorithm we used for calculation of extrarenal clearance of IOT, we measured urinary recovery of IOT in 24-h urine collected during the 24 h following IOT infusion. Urinary recovery of IOT (% of input) was strongly and negatively correlated with calculated extrarenal clearance (\(r = -0.80, P < 0.001 \)). Mean total urinary recovery was 87% \pm 8%, mirrored by a calculated extrarenal clearance of 14% \pm 12% of total input, supporting the validity of our calculation of extrarenal clearance of IOT.

In Figure 1, the results of the simultaneous assessments of Vd IOT and Vd bromide are shown. The ECFV obtained as Vd IOT was 16.73 \pm 3.15 l, and the ECFV obtained as Vd IOT was 16.71 \pm 2.96 l (not significant). Vd IOT and Vd bromide were strongly correlated (upper panel, \(r = 0.933, P < 0.001 \)). In the Bland-Altman plot (lower panel), no systematic error was apparent, with 95% limits of agreement ranging from -2.3 to 2.2 l. Similar results were obtained in the 30 subjects in which GFR was below 75 ml/min, i.e., subjects with a substantial extrarenal clearance of IOT, demonstrating the adequacy of our correction for extrarenal clearance of IOT.

Reproducibility and Sensitivity to Detect Changes in ECFV

Data from the reproducibility experiment are given in Table 2, showing the duplicate measurements on low (50 mmol Na\(^+\)/d) and high sodium (200 mmol Na\(^+\)/d). Dietary compliance was good during all four periods, as shown by 24-h urinary sodium excretion. ECFV, body weight, and GFR were virtually identical during the duplicate measurements on low and high sodium, respectively. Reproducibility of the ECFV

<table>
<thead>
<tr>
<th>Table 1. Characteristics of potential donor population ((n = 158))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential kidney donors</td>
</tr>
<tr>
<td>Male((n = 73))</td>
</tr>
<tr>
<td>Age (yr)</td>
</tr>
<tr>
<td>Body weight (kg)</td>
</tr>
<tr>
<td>Height (cm)</td>
</tr>
<tr>
<td>BSA (m(^2))</td>
</tr>
<tr>
<td>GFR (ml/min)</td>
</tr>
<tr>
<td>ECFV as Vd IOT (L)</td>
</tr>
<tr>
<td>GFR/ECFV (%/h)</td>
</tr>
<tr>
<td>ECFV/GFR (h)</td>
</tr>
</tbody>
</table>

*\(P < 0.01 \), male versus female.
measurement was assessed separately for the two low-sodium periods and the two high-sodium periods. During low sodium, the mean difference in ECFV (bias) was 1.3%, with a COV of 8.6%. During high sodium, bias was 1.1% with a COV of 13.1%.

In both periods, as anticipated, the shift from low- to high-sodium intake resulted in a rise in ECFV by period 1, 1.09 ± 2.21, \(P < 0.05 \); period 2, 1.13 ± 2.01, \(P < 0.01 \) without statistical differences between the two periods. The mean rise in ECFV induced by high sodium was 1.11 ± 1.49 L (\(P < 0.01 \)), corresponding with a mean rise in body weight of 1.60 ± 0.85 kg (\(P < 0.01 \)), as indicated in Figure 2. The individual changes in body weight were significantly and positively correlated to the individual changes in ECFV (\(r = 0.552, P < 0.01 \)).

GFR increased significantly from low to high sodium (128 ± 18 versus 137 ± 18 ml/min; \(P < 0.01 \), Figure 3). The sodium-induced rise in renal function was also significant for GFR/BSA (109 ± 13 versus 116 ± 12 ml/min per 1.73 m²; \(P < 0.01 \)), as well as for GFR/BSA estimated by the MDRD formula (89 ± 12 versus 94 ± 12 ml/min per 1.73 m², \(P < 0.01 \)) and for 24-h creatinine clearance/BSA (94 ± 20 versus 106 ± 21 ml/min per 1.73 m², \(P < 0.01 \)). However, renal function expressed as GFR/ECFV remained unchanged during the shift from low to high sodium: 39.0 ± 3.6% h⁻¹ and 39.6 ± 4.2% h⁻¹ (not significant) as the rise in GFR was matched by a corresponding rise in ECFV.

Table 2. Measurements in healthy young men (\(n = 25 \)) on four separate occasions

<table>
<thead>
<tr>
<th></th>
<th>Low sodium diet</th>
<th>High sodium diet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Period 1</td>
<td>Period 2</td>
</tr>
<tr>
<td>Na⁺ excretion (mmol/24 h)</td>
<td>35 ± 22</td>
<td>39 ± 16</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>80.1 ± 11.0</td>
<td>80.2 ± 11.0</td>
</tr>
<tr>
<td>GFR (ml/min)</td>
<td>127 ± 20</td>
<td>129 ± 18</td>
</tr>
<tr>
<td>ECFV as Vd IOT (L)</td>
<td>19.7 ± 2.7</td>
<td>20.0 ± 2.4</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>85 ± 6</td>
<td>86 ± 8</td>
</tr>
</tbody>
</table>

Figure 2. Mean ± SEM for body weight and extracellular volume (ECFV), respectively, in subjects (\(n = 25 \)) in balance on low sodium (LS) and high sodium (HS). *\(P < 0.001 \).

Between-subject Normalization of GFR by ECFV

To address the impact of expressing renal function as GFR/ECFV, we analyzed data from 158 potential kidney donors. Their characteristics are given in Table 1. We analyzed for the determinants of GFR, GFR/BSA, GFR/height, and GFR/ECFV by multivariate modeling and found the models shown in Table 3. As shown in the left column, age, BSA, and gender are all independent determinants of GFR. Second, in line with the first model, age and gender are both independent determinants of GFR/BSA, and of GFR/height. However, when GFR is indexed to ECFV, only age is an independent determinant for GFR. Thus, in healthy subjects, indexing to ECFV appears to nullify gender and BSA- and height-related differences in GFR.

The impact of the various ways of indexing on the differences in renal function between men and women is illustrated in Figure 4. Uncorrected GFR was higher in men (130 ± 28 versus 102 ± 25 ml/min, \(P < 0.01 \)). Body weight and height, and consequently BSA, were higher in men (Table 1), but indexing to BSA did not nullify differences in GFR between men and women (GFR/BSA 105 ± 20 versus 96 ± 22 ml/min per 1.73 m², \(P < 0.01 \)), and neither did indexing to height (GFR/height 72 ± 15 for men versus 62 ± 11 ml/min per m for women, \(P < 0.01 \)). The same was true for GFR estimated by the MDRD (78 ± 12 and 67 ± 9 ml/min per 1.73 m², \(P < 0.01 \)). However, GFR indexed to ECFV was similar for men and women, being 35% ± 6%/h and 36% ± 6%/h (not significant). The variance of GFR indexed to ECFV in this healthy population is demonstrated in Figure 5, the average value being 36%/h with a 95% confidence interval of 24% to 48%/h.

Additionally, we expressed renal function as GFR/ECFV in %/h and as ECFV/GFR (h) in the 48 subjects studied in the calibration experiment, dividing these subjects based on GFR/BSA (respectively, a GFR < 30, 30 to 60, and > 60 ml/min per 1.73 m²). Median (range) GFR/BSA was 23 (17 to 29), 49 (32 to 59), and 102 (60 to 133) ml/min per 1.73 m², respectively (\(P < 0.01 \)). Median (range) ECFV/GFR was 10 (7 to 13), 22 (17 to 25), and 41 (20 to 60) %/h, respectively (\(P < 0.01 \) between subgroups). Finally, median (range) ECFV/GFR was 9.6 (7.6 to 14.4), 4.6 (4.0 to 6.0), and 2.4 (1.7 to 5.0) h, respectively (\(P < 0.01 \) between subgroups). These values show that the proportion of the ECFV cleared per unit of time increases with increasing GFR; conversely, the time required to clear the whole ECFV decreases.
Our study demonstrates the validity and reproducibility of assessing ECFV simultaneously with GFR by the constant infusion method with IOT. This provides not only a useful tool for pathophysiologic studies on ECFV in renal conditions but also allows the indexing of GFR to ECFV without need for additional procedures or parameters. As the Vd of other GFR tracers also equals ECFV, renal function protocols with other tracers could similarly be validated for simultaneous assessment of ECFV. This will increase the diagnostic yield of renal function measurements by specific tracers.

This is the first study to validate Vd IOT as a measure for ECFV in human subjects. Vd IOT was in good agreement with Vd bromide as a gold standard for ECFV over a wide range of renal function. Moreover, the day-to-day variation of Vd IOT was low, at least during standardized sodium intakes in healthy subjects, i.e., conditions in which the biologic variation in ECFV is low. Finally, a change in ECFV induced by a shift in sodium intake could be adequately detected by the assessment of Vd IOT.

Other GFR tracers, such as inulin, 99mTc-DTPA, 51Cr-EDTA, and iohexol (2–9), have also been used for simultaneous assessment of GFR and ECFV. ECFV assessed as Vd of 51Cr-EDTA had a day-to-day variation of 11.4% (7), comparable to the reproducibility of Vd IOT in our study. Most studies report that ECFV can be adequately assessed by the GFR tracer studied, without however calibrating Vd of the tracer against a gold standard for ECFV (4,6–8). Vd bromide is considered the gold standard for ECFV assessment because its tissue content and serum distribution are well documented (21). Only one small study, in 10 healthy subjects, calibrated tracer Vd of iohexol against Vd bromide. In this study, Vd iohexol correlated well with Vd bromide, but Vd iohexol was on average 0.7 L lower than Vd bromide (2). For use in renal populations, however, the calibration in subjects with renal function impairment is needed, as renal function impairment can affect several fac-
The difference in renal function between men and women, as which could be traced back to a fallacy of indexing for BSA (27). In our study, GFR was gender dependent. This is in line with data by Turner and Reilly, showing a minor difference in GFR per 1.73 m² BSA between men and women, even though others (26,28), did not annihilate the difference between males and females in our study either, providing an argument against indexing to height.

It has been pointed out recently that no gold standard is available to determine which indexing factor is best (12) and that the best indexing factor for GFR would be the one that provides the best clinical validity. Final proof whether ECFV is indeed the best indexing factor for GFR should therefore be provided by long-term follow-up studies in which superiority of GFR/ECFV as predictor of renal outcome is studied.

When GFR is expressed per liter of ECFV, its unit reflects the virtual volume of ECFV, which is cleared per unit of time. By indexing GFR (ml/min) to ECFV (l), the volume expression drops out of the equation; thus, GFR/ECFV reflects the proportion of the ECFV cleared per unit of time. The other way around, ECFV/GFR reflects the time needed to clear the complete ECFV. This way of considering renal function may help to appreciate renal function relative to the metabolic and homeostatic requirements of the body. For instance, in our healthy volunteers, GFR/ECFV was approximately 40%/h, implicating that 40% of the ECFV is cleared per hour, and, the other way around, that the kidneys need 2.5 h to clear the complete ECFV. The data in the subjects with renal function impairment, as studied in the calibration experiment, show that GFR/ECFV is lower in those with renal function impairment; a smaller proportion of the ECFV is cleared per unit of time.

ECFV is regulated within relatively narrow boundaries, but it is not fixed. It adapts to altered sodium intake, as also confirmed here. It could be argued that this hampers its suitability as indexing parameter. On the other hand, considering GFR in relation to the prevalent ECFV may allow better interpretation of changes in GFR, by distinguishing between changes in GFR secondary to altered volume status and changes in GFR dissociated from changes in ECFV. In the current study, we induced a modest change in ECFV by a shift in sodium intake to investigate whether the estimate by Vₐ IOT was sufficiently sensitive to detect the change in ECFV. Indeed, Vₐ IOT was significantly higher during high-sodium intake. The rise in ECFV matched the anticipated rise in GFR and accordingly, GFR indexed to ECFV was similar during low and liberal sodium intake. It would be of interest, therefore, to have the information on simultaneous values of ECFV and GFR also in disease conditions where GFR, ECFV, or both are disturbed. In diabetes, for instance, elevated GFR and volume expansion occur in incipient diabetic nephropathy (29,30). Although, in a small cohort, hyperfiltration seemed to be independent of ECFV expansion ECFV was similar during low and liberal sodium intake. It would be of interest, therefore, to have the information on simultaneous values of ECFV and GFR also in disease conditions where GFR, ECFV, or both are disturbed. In diabetes, for instance, elevated GFR and volume expansion occur in incipient diabetic nephropathy (29,30). Although, in a small cohort, hyperfiltration seemed to be independent of ECFV expansion (30), studies in large cohorts are lacking. Routinely implementing ECFV assessment in tracer-based GFR assessment potentially yields large study-cohorts, which have an enormous explanatory potential for studying not only GFR, but also ECFV.

Recently, Titze et al. (31) provided innovative insights in the association between sodium balance and ECFV regulation. In rat models, they found that an increase in sodium intake went along with a less than anticipated rise in ECFV, which could be attributed to nonsosmotic storage of sodium in tissues as the skin (32). Whether such a nonsosmotic storage exists in human has not been established yet. In our study, the mean rise in

![Histogram of GFR/ECFV values in the population of 158 potential kidney donors. Number of subjects given for categories of GFR/ECFV expressed in %/h.](image)
ECFV elicited by the shift from low- to high-sodium intake was 1.1 l, where in theory a rise of 1.43 l could be calculated. It is tempting to speculate that this difference reflects nonosmotic storage of sodium, but so far, we have no tools to support this assumption.

Several limitations should be mentioned. First, our assessment of ECFV was not tested in subjects with overt pathology of the ECFV, with fluid overload and/or abnormalities in body fluid distribution, such as the nephrotic syndrome and ascites. Therefore, generalization of our findings to populations with gross abnormalities of ECFV and/or abnormal distribution of body fluid compartments is not warranted and requires more extensive validation in appropriate study populations. Second, \(P_{\text{ECF}} \) is used for the calculation of both GFR and ECFV, so the two are not arithmetically independent. As a consequence, a correlation between GFR and ECFV cannot simply be interpreted as a biologic association. It should be emphasized, however, that this does not invalidate the use of GFR/ECFV, as in this ratio \(P_{\text{ECF}} \) falls out of the equation. For this reason, as also pointed out by others, assessment of GFR/ECFV is less sensitive to procedural errors than assessment of GFR alone (5,11). Third, this is a single-center study, investigating one tracer and one measurement protocol only. Thus, for other settings, separate validation and calibration are warranted. Yet, from a theoretical perspective and supported by several studies, single infusion methods using plasma disappearance curves are well suited for ECFV assessment as well (4). Finally, we used a radio-labeled tracer for this study, which obvious has limitations in case of handling, storage, and disposal of radio-labeled materials and exclusion of certain patients as pregnant women and children. Non-radio-labeled tracers as iohexol could be a valid alternative here.

In clinical practice, creatinine-based approaches, be it renal function equations or creatinine clearance, are the usual way to estimate renal function (33,34). Creatinine-based renal function estimates are also generally indexed to body dimensions, usually BSA. However, the \(V_{\text{gl}} \) of creatinine cannot directly be established, so our strategy is unfortunately not applicable to creatinine-based renal function measurements.

Conclusion

Our study demonstrates the feasibility and validity of measuring ECFV simultaneously with assessing GFR by \(^{125}\text{I} \)-iothalamate clearance, without need for adapting the GFR protocol. This not only enables indexing of GFR to ECFV but also provides information on ECFV in studies on renal function. ECFV is a major physiologic parameter, and disturbances are common in renal patients. By our approach, which could also be implemented for other GFR tracers, information on ECFV can be conveniently obtained as an additional parameter in subjects in whom GFR is measured. This will increase the yield of measurements of true GFR.

Acknowledgments

The authors thank Mr. J. H. Pol, Mrs. M. C. Vroom-Dallinga, and Mrs. R. Karsten-Barelds for technical assistance in the renal function measurements and Dr. P. L. Jager and Mrs. A. K. van Zanten for designing the studies and for their critical remarks. This study was presented at the annual meeting of the American Society of Nephrology, San Francisco, California, 2007.

Disclosures

None.

References

