Acquired Cystic Kidney Disease and Renal Cell Cancer after Transplantation: Time to Rethink Screening?

John D. Scandling
Adult Kidney and Pancreas Transplant Program, Palo Alto, California


Acquired cystic kidney disease (ACKD) may have been first described more than a century ago (1). Its recognition as a disease of consequence in patients who undergo long-term maintenance hemodialysis was in the 1970s (2). In the ensuing three decades, repeated cross-sectional studies have corroborated early findings that this disease affects one third or more of long-term (>3 yr) hemodialysis patients and that approximately 20% of those with ACKD will have renal cell carcinoma, representing a prevalence of approximately 5% (3). Age, male gender, and duration of dialysis are primary risk factors. It may occur less frequently in those who are on peritoneal dialysis and may regress after transplantation (4). Its pathogenesis is not understood but may relate to the activation of proto-oncogenes, which may also be responsible for the subsequent development of renal cell carcinoma (5).

Transplantation carries risk for cancer, more so as the years of exposure to the immunosuppressive agents accrue. Kidney transplant recipients in the United States have been shown to carry a 15-fold risk for kidney cancer (which would include non–renal cell cancers as well) in the first 3 yr after transplantation when compared with the general US population and a 39% higher risk for developing kidney cancer in those years in comparison with transplant candidates who are still on the waiting list (6).

Recommendation to screen patients with ESRD for ACKD and renal cell cancer has not been uniform because of their limited life expectancy (7). Screening kidney transplant candidates for ACKD and kidney cancer is recommended by the North American and European professional transplantation societies, but the guidelines as to who should be screened are vague. The guideline of the American Society of Transplantation recommends screening patients who are at high risk for renal cell carcinoma but does not define high risk (8). The guideline of the European Renal Association–European Dialysis and Transplant Association recommends screening of candidates who have been long-term dialysis patients but does not define long-term (9). It is not known whether these guidelines are followed in practice.

The two societies differ in their recommendation for screening after kidney transplantation. The American society guideline does not recommend screening (10). The European society guideline recommends screening but with the qualifier that it be done “when applicable,” which is not defined (11). Again, the adherence to this guideline in practice is unknown.

In this issue, Schwarz et al. (12) report their findings of ACKD and renal cell cancer in a cross-sectional study of a large population of kidney transplant recipients who were anywhere from having recently received a transplant to 33 yr after transplantation. The mean duration of dialysis was 4 to 5 yr, and the mean time since transplantation was 9 yr. Of 916 eligible patients, 561 (61%) participated and underwent ultrasound of the native kidneys. Of these, 129 (23%) were found to have ACKD, defined as more than three cysts in both kidneys. Eight (1.4%) patients had newly diagnosed renal cell cancer, seven of whom had ACKD. An additional 19 patients in the group studied had a history of formerly diagnosed renal cell cancer, 18 of whom had ACKD. Together, these 27 patients with renal cell cancer represented 4.8% of the 561 patients studied. The prevalence of renal cell cancer in those with ACKD was approximately 20% and >50% in those with complex cysts (Bosniak categories IIIF, III, and IV) (13). These prevalences of renal cell cancer in a cohort of patients with ESRD and renal cell cancer in the presence of ACKD corroborate the findings of previous studies of both dialysis and transplant patients (3).

Schwarz et al. found that older age, male gender, a history of heart disease, larger kidneys, and greater kidney calcifications were associated with ACKD. There was no association with duration of dialysis, time since transplantation, or immunosuppressive regimen. Curiously, both duration of dialysis and time since transplantation were shorter in those with renal cell cancer. The type of renal cell cancer was clear cell carcinoma in 58% and papillary carcinoma in 42% (one patient had both types). All patients were asymptomatic at diagnosis, and only one was found to have a metastasis, a lung metastasis in a patient with clear cell carcinoma. All were treated successfully with surgical resection. The benign course in these patients was in distinct contrast to an earlier report from the same institution, wherein metastatic disease and mortality were more common (14). Their relatively benign course was thought to be related to earlier detection, small size of cancer at detection, the overrepresentation of papillary versus clear cell carcinoma in ACKD and lower proliferative activity in renal cell cancer associated with ACKD.

Schwarz et al. recommend a screening and management pro-
tocol in transplant recipients, incorporating the Bosniak renal
cyst classification system (13):

1. All recipients: Yearly ultrasound screening of the native
kidneys.
2. ACKD and Bosniak category I or II cysts (benign simple
cysts): Twice yearly ultrasound screening, computed tomog-
raphy scan if progression evident.
3. ACKD and Bosniak category IIF (F for follow-up) cysts
(moderately complex cysts): Quarterly ultrasound screening
and yearly computed tomography or magnetic resonance
imaging scan, nephrectomy if progression evident even if
not reaching category III or IV.
4. ACKD and Bosniak category III ("indeterminate" cystic
masses) or IV (clearly malignant cystic masses): Nephrec-
tomy.

Life expectancy after transplantation has improved with ad-
vances in the discipline over recent decades so that it is now
well more than double that of a patient on dialysis regardless of
age (15). In 2004, the expected remaining lifetime of a US
transplant recipient 50 to 54 yr of age, which was the average
age of the patients with renal cell cancer in the report by
Schwarz et al., was 17 yr. Cancer may soon be the leading cause
of death late after transplantation (16). Despite the low preva-
ience of renal cell cancer in ESRD, the relatively benign course
of death late after transplantation (16). Despite the low preva-
ience of renal cell cancer in ESRD, the relatively benign course
of the affected patients in the report by Schwarz et al., and the
possibility of lesser cancer risk with newer immunosuppressive
regimens (17), it is time to rethink the published guidelines and
consider screening all kidney transplant candidates and recip-
ients for ACKD and renal cell cancer.

Disclosures

None.

References

1. Gehrig JJ Jr,Gottheiner TI,Swenson RS: Acquired cystic
2. Dunnill MS,Millard PR,Oliver D: Acquired cystic disease of
the kidneys: A hazard of long-term intermittent mainten-
3. Chapman AB,Rahbari-Oskouei FF,Bennett WM: Acquired
cystic disease of the kidney in adults. UpToDate version
15.1. Available online: http://www.uptodate.com. Ac-
cessed May 10, 2007
4. Lien YH,Hunt KR,Siskind MS,Zukoski C: Association of
cyclosporin A with acquired cystic kidney disease of the
native kidneys in transplant recipients. Kidney Int 44:
613–616, 1993
M: C-jun activation in acquired cystic kidney disease and
6. Kasiske BL,Snyder JJ,Gilbertson DT,Wang C:Cancer after
kidney transplantation in the United States. Am J Trans-
plant 4: 905–913, 2004
7. Sarasin FP,Wong JB,Levey AS,Meyer KB: Screening for
acquired cystic kidney disease: A decision analytic pers-
8. Kasiske BL,Cantero CB,Hariharan S,Hricik DE,Kerman
RH,Roth D,Rush DN,Vazquez MA,Weir MR; for the
American Society of Transplantation: The evaluation of
renal transplant candidates: Clinical practice guidelines.
Am J Transplant 1[Suppl 2]: 3–95, 2001
9. EBPG Expert Group on Renal Transplantation,European
Renal Association-European Dialysis and Transplant
Association: Evaluation, selection and preparation of the
potential transplant recipient. Nephrol Dial Transplant
15[Suppl 7]: 3–38, 2000
10. Kasiske BL,Vazquez MA,Harmon WE,Brown RS,Dano-
vitch GM,Gaston RS,Roth D,Scandling JD Jr,Singer GS;
for the American Society of Transplantation: Recommen-
dations for the outpatient surveillance of renal transplant
11. EBPG Expert Group on Renal Transplantation,European
Renal Association-European Dialysis and Transplant
Association: Long-term management of the transplant recip-
carcinoma in transplant recipients with acquired cystic
cyst classification system. Urology 66: 484–488, 2005
Koch KM, Brunkhorst R: Risk of renal cell carcinoma after
15. US Renal Data System: USRDS 2006 Annual Data Report:
Atlas of End-Stage Renal Disease in the United States, Vol 1,
Bethesda, National Institutes of Health, National Institute
of Diabetes and Digestive and Kidney Diseases, 2006, p 136
16. Dantal J,Pohanka E:Malignancies in renal transplantation:
An unmet medical need. Nephrol Dial Transplant 22[Suppl
1]: i4–i10, 2007
17. Campistol JM,Albanell J,Arns W,Boletis I,Dantal J,de
Fijter JW,Mortensen SA,Neumayer H-H,Oyen O,Pascual
J,Pohanka E,Schena FP,Seron D,Sparacino V,Chapman
JR: Use of proliferation signal inhibitors in the manage-
ment of post-transplant malignancies: Clinical guidance.
Nephrol Dial Transplant 22[Suppl 1]: i36–i41, 2007

See the related article, “Renal Cell Carcinoma in Transplant Recipients with Acquired Cystic Kidney Disease,”
on pages 750–756.